Unit 2 – Darts Assignment
Please complete all the pages on this form and upload it along with your .exe, code and report. This form must not be zipped.

	Please which tasks you have completed:

	Task 1
	

	Task 2
	

	Task 3
	

Files for uploading – these must be checked off before uploading
	
	 to indicate these have been included

	Code – must be compressed in a .zip
The zip file name must contain your student number.
	

	.exe – this must be included in the .zip
	

	This form – uploaded outside of zip
	

Please answer the following questions
	Questions
	

	Does the code compile without syntax errors? If no explain what the problems are and how you’ve attempted to resolve it.
	There were no syntax errors, however there was a logic error. The program would occasionally stop running due to the players’ score going below zero. I believe I have solved this by using watchpoints at specific points and performing a dry-run. As a result of these debugging strategies, I found a part of the code where there was no clause to prevent the player from going “bust”. I added a clause there and the program has since run correctly.

	How many matches does your program simulate?
	The player can choose how many to run in the 301 mode as per the brief, and in 501 it runs 100 times.

	Who plays first?
	User decides in 301 as per the brief, and whoever is closes to the bull in 501

	What percentage accuracy have you assigned to the players?
	The user decides in 301 as per the brief, and in 501 I have assigned 85% to player one and 87% to player two.

Report – please write your report below:

My program contains 301 and 501, so the only interaction required from the user is to select the game mode and to alter the accuracies of the players and who throw first in 301, as well as choosing how many times to run the simulation, as per the brief. For both game modes, a switch statement is used to alternate between the two player objects until one player wins the game, and there is always an if statement to make sure the player’s score never goes below 50 for 301 and 2 for 501. For 301, the code uses a do while loop (while both players’ scores are above 0) inside a for loop for the number of games the user has entered. To select the target in 301, a function is called with the score being passed in to calculate what the player should aim at. The program then aims for this and subtracts the hit from the player’s score, provided it doesn’t take the player below 50. The program runs until one player hits a bullseye to finish. The artificial intelligence involved is calculating the target based on the player’s score. After the specified number of simulations run, the program calculates the average number of successful hits per game for each player as well as each player’s success rate based on the number of successful hits compared to the number of total hits. This is then output. For 501, the approach is more complicated. I use many different if statements to determine what the program should do next. To start with, the program checks if the player has a score below 180 and not on a number that has no finish. This is to avoid the player going bust. If this condition is true but the player’s score is over 170, the program throws for 3 treble 15s to get down to a relatively easy finish. The program then checks if the player has a score under 40 which is even. If this is true, the player can throw for a double to checkout. If the player has a score under 170, a 3 dart finish is possible. To check if the finish is a 3 dart finish, a 2 dart finish, the program calls the checkout function, which contains a 4d array of all the three dart finishes and a 3d array of all the two dart finishes. To check for a one dart finish, the program checks if the score is below 40 and even, in which case it throws for a double of half the player’s score to attempt to checkout. The steps for two and three dart finishes are concatenated into a string and returned to the main function. The main function then splits this up using substring operations. If the first character of the string is a “T” the program throws for a treble, if the first character is a “D” the program throws for a double, and if the first character is a number then the program throws for a single. If the first step is achieved, the player can move onto the second step/final step if it’s a two dart finish, or the final step for a 3 dart finish. If a step of the checkout is not hit, the alternate checkout function is called to check if the player can still finish even though a step was not achieved. If the player can finish, this process repeated using the new required score. If the player cannot finish, the function returns an empty string and the program throws for a single 20. This process repeats until one player reaches 0. Once a player reaches 0, the number of games they have won is incremented by one, and both players scores are reset to 501. Once a player has won three games, their set wins increments by one and each players’ score resets to 0. Once a player wins 7 sets, the game is over. Each players’ set wins are concatenated together to create a score, which is scored in the scores array. Once the set amount of simulations have been run, in this case I’ve elected to run it 100 times, the frequency for each score is calculated. This is done by looping through the scores array and counting the number of occurrences for each score. Once a score has been counted, it is stored in another array which is checked every iteration of the loop to avoid counting a score twice. After this is completed, the frequencies for each score are output. The artificial intelligence for my 501 game mode is demonstrated when calculating the finishes using my arrays and the current score. I think that object orientation is much more beneficial than procedural programming for this project because classes keep everything together and there can be as many instances of those classes as possible, rather than having far too many different variables for each player, which would be the case if this was done using procedural programming. My debugging approach consisted of using breakpoints to test certain parts of the code, but mostly watchpoints on variables to make sure everything is updating correctly.

Pseudocode – please write your pseudocode below
Source.cpp:

1. Include the required libraries
2. Initialise random function
3. Declare playOrder variable to store which player’s turn it is
4. Declare gameDecision variable
5. Take in gameDecision from user input
6. If gameDecision = 1
	6.1 Call the constructor to initialise the players’ names, total throws, game wins, and current score
	6.2 Initialise an object of the Board class
	6.3 Declare variables for the players’ accuracy
	6.4 Take in the players’ accuracy from user input
	6.5 Call the set_accuracy function and pass in the accuracy for each player
	6.6 Call the set_successful_hits function and pass in 0 for each player
	6.7 Declare the variable to store the number of games to be simulated and the variable to store the player’s score for a throw
	6.8 Take in playOrder from user input
	6.9 Loop for the number of games to be simulated
		6.9.1 loop until either player reaches 0
		6.9.2 Switch statement for playOrder
		6.9.3 If the case is 1 player one will throw first
			6.9.3.1 Call set_total_throws function to increment the player’s total throws by one
			6.9.3.2 Call set_target function passing in the player’s score
			6.9.3.3 If target = 50
				6.9.3.3.1 If the player’s score = 50
					6.9.3.3.1.1 If the score for that throw = 50
						6.9.3.3.1.1.1 Call set_successful_hits to increment successful hits by one
						6.9.3.3.1.1.2 Call set_current_score and set the player’s score to 0
						6.9.3.3.1.1.3 Break
					6.9.3.3.1.2 Else if the score for that throw is 50
						6.9.3.3.1.2.1 call set_successful_hits to increment the successful hits by one
						6.9.3.3.1.2.2 call set_current_score to update the player’s score
					6.9.3.3.1.3 Else
						6.9.3.3.1.3.1 if the player’s score minus the score for that throw is at least 50
							6.9.3.3.1.3.1.1 call set_current_score to update the player’s score
			6.9.3.4 If the target is 20
				6.9.3.4.1 Call single_throw to throw for single 20
				6.9.3.4.1 if the throw score = 20
					6.9.3.4.1.1 call set_successful_hits to increment the player’s successful hits by one
				6.9.3.4.2 else
					6.9.3.4.2 if the player’s score minus the throw score is at least 50
						6.9.3.4.2.1 call set_current_score to update the player’s score
			6.9.3.5 else
				6.9.3.5.1 throw for the target
				6.9.3.5.2 if the target is hit
					6.9.3.5.2.1 call set_successful_hits to increment the player’s successful hits by one
					6.9.3.5.2.1 call set_current_score to update the player’s score
				6.9.3.5.2 if the target is not hit and the score will remain at least 50
					6.9.3.5.2.1 call set_current_score to update the player’s score
			6.9.3.2 break
		6.9.4 If the case is 2 player two will throw first
			6.9.4.1 Call set_total_throws function to increment the player’s total throws by one
			6.9.4.2 Call set_target function passing in the player’s score
			6.9.4.3 If target = 50
				6.9.4.3.1 If the player’s score = 50
					6.9.4.3.1.1 If the score for that throw = 50
						6.9.4.3.1.1.1 Call set_successful_hits to increment successful hits by one
						6.9.4.3.1.1.2 Call set_current_score and set the player’s score to 0
						6.9.4.3.1.1.3 Break
					6.9.4.3.1.2 Else if the score for that throw is 50
						6.9.4.3.1.2.1 call set_successful_hits to increment the successful hits by one
						6.9.4.3.1.2.2 call set_current_score to update the player’s score
					6.9.4.3.1.3 Else
						6.9.4.3.1.3.1 if the player’s score minus the score for that throw is at least 50
							6.9.4.3.1.3.1.1 call set_current_score to update the player’s score
			6.9.4.4 If the target is 20
				6.9.4.4.1 Call single_throw to throw for single 20
				6.9.4.4.1 if the throw score = 20
					6.9.4.4.1.1 call set_successful_hits to increment the player’s successful hits by one
				6.9.4.4.1 else
					6.9.4.4.2 if the player’s score minus the throw score is at least 50
						6.9.4.4.2.1 call set_current_score to update the player’s score
			6.9.4.5 else
				6.9.4.5.1 throw for the target
				6.9.4.5.2 if the target is hit
					6.9.4.5.2.1 call set_successful_hits to increment the player’s successful hits by one
					6.9.4.5.2.1 call set_current_score to update the player’s score
				6.9.4.5.2 if the target is not hit and the score will remain at least 50
					6.9.4.5.2.1 call set_current_score to update the player’s score
			6.9.4.2 break
		6.9.5 Increment playOrder by one
			6.9.5.1 if playOrder = 3
				6.9.5.1.1 set playOrder to 1
		6.9.6 if player one’s score is 0
			6.9.6.1 call set_game_wins and increment player one’s game wins by one
			6.9.6.2 call set_current_score to reset both players back to 301
		6.9.7 if player two’s score is 0
			6.9.7.1 call set_game_wins and increment player two’s game wins by one
			6.9.7.2 call set_current_score to reset both players back to 301
		6.9.8 call set_actual_success_rate and calculate the actual success rate for both players based on their scores
		6.9.9 call set_avgSuccess and calculate the average number of successful throws each player had per turn
		6.9.9.1 output the actual success rate and average number of successful throws
 7 If gameDecision = 2 the user has chosen 501
	7.1 call the constructor to initialise two objects of the player class
	7.2 Set the players’ accuracies
	7.3 Initialise an object of the Board class
7.4 Initialise the variable to store the number of games to simulate
7.5 declare the variable to hold the score of a match and the array to store the scores for each match
7.6 declare the variables to hold the scores for throwing at the bull and throw for the bull
7.7 if player one throws closer to the bull
	7.7.1 set playOrder to 1
7.8 if player two throws closer to the bull
	7.8.1 set playOrder to 2
7.9 loop for the number of games to simulate
	7.9.1 set each player’s set wins to 0
	7.9.2 set each player’s current score to 501
	7.9.3 loop until either player reaches 7 set wins
		7.9.3.1 switch statement for playOrder
		7.9.3.2 if case is 1
			7.9.3.2.1 if score is less than 180 and not equal to 169, 168, 166, 165, 163, 162, 159
				7.9.3.2.1.1 if the score is over 170
					7.9.3.2.1.1.1 loop three times
						7.9.3.2.1.1.1.1 throw for treble 15
							7.9.3.2.1.1.1.1.1 if the player’s score – the throw score
								7.9.3.2.1.1.1.1.1.1 call set_current_score to update the score
				7.9.3.2.1.2 if the score is below 40 and is even
					7.9.3.2.1.2.1 throw for a double to finish
					7.9.3.2.1.2.2 increment total throws by one
					7.9.3.2.1.2.3 if the target is hit
						7.9.3.2.1.2.3.1 call set_current_score to set the score to 0
					7.9.3.1.2.4 if the target is not hit but the score will be at least 2
						7.9.3.1.2.4.1 call set_current_score to update the score	
				7.9.3.2.1.3 else
					7.9.3.2.1.3.1 call checkout to initialise remainingScore to a string containing the required steps to checkout
					7.9.3.2.1.3.2 initialise commaPos to the position of the first comma in remainingScore
					7.9.3.2.1.3.3 loop for the length of remainingScore
						7.9.3.2.1.3.3.1 if there is a comma at the current index
							7.9.3.2.1.3.3.1.1 increment numCommas by one
					7.9.3.2.1.3.4 if there are 2 commas found
						7.9.3.2.1.3.4.1 initialise variable throw1 to the first step of the checkout
						7.9.3.2.1.3.4.2 initialise variable throw1Hit and throw2Hit as false
						7.9.3.2.1.3.4.3 throw for the treble value throw1
						7.9.3.2.1.3.4.4 if the current score – the throw score is at least 2
							7.9.3.2.1.3.4.4.1 call set_current_score to update the player’s score
						7.9.3.2.1.3.4.5 if the target is hit
							7.9.3.2.1.3.4.5.1 set throw1Hit to true
						7.9.3.2.1.3.4.6 if throw1Hit is true
							7.9.3.2.1.3.4.6.1 remove the first part of the checkout from remainingScore
							7.9.3.2.1.3.4.6.2 set commaPos to the position of the next comma in the string
							7.9.3.2.1.3.4.6.3 set throw2 to the second part of the checkout
							7.9.3.2.1.3.4.6.4 If the first character of throw2 is a “T”
								7.9.3.2.1.3.4.6.4.1 throw for the treble value of throw2
								7.9.3.2.1.3.4.6.4.2 call set_total_throws to increment score by one
								7.9.3.2.1.3.4.6.4.3 if the player’s current score – the throw score is at least 2
									7.9.3.2.1.3.4.6.4.3.1 call set_current_score to update the player’s score
								7.9.3.2.1.3.4.6.4.3 if the target is hit
									7.9.3.2.1.3.4.6.4.3.1 set throw2Hit to true
							7.9.3.2.1.3.4.6.5 if the first character of throw2 is a “D”
								7.9.3.2.1.3.4.6.5.1 throw for the double value of throw2
								7.9.3.2.1.3.4.6.6 call set_total _throws to increment the total throws by one
								7.9.3.2.1.3.4.6.7 if the player’s score – the throw score is at least 2
									7.9.3.2.1.3.4.6.7.1 call set_current_score to update the player’s score
									7.9.3.2.1.3.4.6.7.2 If the target is hit
										7.9.3.2.1.3.4.6.7.2.1 set throw2Hit to true
							7.9.4.3.1.3.4.6.6 else
								7.9.4.3.1.3.4.6.6.1 throw for the value of throw2
								7.9.4.3.1.3.4.6.6.2 call set_total_throws to increment the total throws by one
								7.9.4.3.1.3.4.6.6.3 if the player’s current score – the throw score is at least 2
									7.9.4.3.1.3.4.6.6.3.1 call set_current_score to update the score
								7.9.4.3.1.3.4.6.6.4 if the target was hit
									7.9.4.3.1.3.4.6.6.4.1 set throw2Hit to true
							7.9.4.3.1.3.4.6.7 if throw2Hit is true
								7.9.4.3.1.3.4.6.7.1 set remainingScore to the final step of the checkout
								7.9.4.3.1.3.4.6.7.2 initalise throw3 to remainingScore
								7.9.4.3.1.3.4.6.7.3 increment total throws by one
								7.9.4.3.1.3.4.6.7.4 if score required is 50
									7.9.4.3.1.3.4.6.7.5 throw for the bull
								7.9.4.3.1.3.4.6.7.5 else
									7.9.4.3.1.3.4.6.7.5.1 throw for the double value of throw3
								7.9.4.3.1.4.6.7.6 if the required score was 50
									7.9.4.3.1.4.6.7.6.1 if the throw score was 50
										7.9.4.3.1.4.6.7.6.1.1 set the score to 0
									7.9.4.3.1.4.6.7.6.2 else
										7.9.4.3.1.4.6.7.2.1 if the target was hit
											7.9.4.3.1.4.6.7.2.1.1 set the score to 0
									7.9.4.3.1.4.6.7.6.3 if the target was not hit
										7.9.4.3.1.4.6.7.6.4 if the current score – the throw score is at least 2
											7.9.4.3.1.4.6.7.4.1 update the score
							7.9.4.3.1.3.4.6.8 if throw2Hit is false
								7.9.4.3.1.3.4.6.8.1 if the current score is less than 40 and even
									7.9.4.3.1.3.4.6.8.1.1 throw for a double to attempt to finish
									7.9.4.3.1.3.4.6.8.1.2 increment total throws by one
									7.9.4.3.1.3.4.6.8.1.3 if the target is hit
										7.9.4.3.1.3.4.6.8.1.3.1 set the player’s score to 0
								7.9.4.3.1.3.4.6.8.2 if the current score is odd
									7.9.4.3.1.3.4.6.8.2.1 throw for a single one to make the score even
								7.9.4.3.1.3.4.6.8.3 if the current score is greater than or equal to 62
									7.9.4.3.1.3.4.6.8.3.1 throw for treble 20
								7.9.4.3.1.3.4.6.8.4 else if the score is greater than 40
									7.9.4.3.1.3.4.6.8.5 throw for single 20
								7.9.4.3.1.3.4.6.8.5 if the player’s score – the throw score is at least 2
									7.4.3.1.3.4.6.8.5.1 update the score
						7.9.3.2.1.3.4.7 if throw1Hit is false
							7.9.3.2.1.3.4.7.1 set remainingScore to the output of the alternateCheckout function
							7.9.3.2.1.3.4.7.2 if remainingScore is empty
								7.9.3.2.1.3.4.7.2.1 loop twice
									7.9.3.2.1.3.4.7.2.1.1 throw for single 20
									7.9.3.2.1.3.4.7.2.1.2 if the player’s current score – the throw score is at least 2
										7.9.3.2.1.3.4.7.2.1.2.1 update the score		
							7.9.3.2.1.3.4.7.3 set commaPos to the position of the first comma found in remainingScore
							7.9.3.2.1.3.4.7.4 set throw1 to the first step of the new checkout, ignoring the first character
							7.9.3.2.1.3.4.8 remove the first part of the checkout from remainingScore
								7.9.3.2.1.3.4.8.1 if the first part of throw1 is a “T”
									7.9.3.2.1.3.4.8.1.1 throw for the treble value of throw1
									7.9.3.2.1.3.4.8.1.2 if the player’s current score – the throw score is at least 2
										7.9.3.2.1.3.4.8.1.2.1 update the score
									7.9.3.2.1.3.4.8.1.3 if the target is hit
										7.9.3.2.1.3.4.8.1.3.1 set throw1Hit to true
								7.9.3.2.1.3.4.8.2 if the first character of remainingScore is a “D”
									7.9.3.2.1.3.4.8.2.1 increment the total throws by one
									7.9.3.2.1.3.4.8.2.2 throw for the double value of throw1
									7.9.3.2.1.3.4.8.2.3 if the current score – the throw score is at least 2
										7.9.3.2.1.3.4.8.2.3.1 update the current score
									7.9.3.2.1.3.4.8.2.4 if the target was hit
										7.9.3.2.3.4.8.2.4.1 set throw1Hit to true
								7.9.3.2.1.3.4.8.3 if throw1Hit is true
									7.9.3.2.1.3.4.8.3.1 set throw2 to the remaining score / 2
									7.9.3.2.1.3.4.8.3.2 increment total throws by one
									7.9.3.2.1.3.4.8.3.3 throw for a double to checkout
									7.9.3.2.1.3.4.8.3.4 if the target was hit
										7.9.3.2.1.3.4.8.3.4.1 set score to 0
									7.9.3.2.1.3.4.8.3.5 else if the current score – the throw score is at least 2	
										7.9.3.2.1.3.4.8.3.5.1 update the score	
								7.9.3.2.1.3.4.8.4 else
									7.9.3.2.1.3.4.8.4.1 set i to 20, loop until i reaches 0
										7.9.3.2.1.3.4.8.4.1.1 if the current score – i is at least 2
											7.9.3.2.1.3.4.8.4.1.1.1 subtract i from the current score
											7.9.3.2.1.3.4.8.4.1.1.2 break	
					7.9.3.2.1.3.5 if there is 1 comma found
						7.9.3.2.1.3.5.1 if the first character of remainingScore is a “T” or “D”
							7.9.3.2.1.3.5.1.1 set throw1 to the first part of the checkout, ignoring the first character
							7.9.3.2.1.3.5.1.2 set throw1Hit and throw2Hit to false
							7.9.3.2.1.3.5.1.3 if the first character of remainingScore is a “T”
								7.9.3.2.1.3.5 throw for the treble value of throw1	
								7.9.3.2.1.3.6 increment total throws by one
								7.9.3.2.1.3.7 if the current score – the throw score is at least 2
									7.9.3.2.1.3.7.1 update the score
 								7.9.3.2.1.3.8 if the target is hit
									7.9.3.2.1.3.8.1 set throwHit1 to true
							7.9.3.2.1.3.5.1.4 if the first character is a “D”
								7.9.3.2.1.3.5.1.4.1 throw for the double value of throw1
								7.9.3.2.1.3.5.1.4.2 if the current score – the throw score is at least 2
									7.9.3.2.1.3.5.1.4.2.1 update the score
								7.9.3.2.1.3.5.1.4.3 if the target is hit
									7.9.3.2.1.3.5.1.4.3.1 set throw1Hit to true
							7.9.3.2.1.3.5.1.5 else
								7.9.3.2.1.3.5.1.5.1 throw for the value of throw1
								7.9.3.2.1.4.5.1.5.1.2 if the current score – the throw score is at least 2
									7.9.3.2.1.4.5.1.5.1.2.1 update the score
								7.9.3.2.1.4.5.1.5.2 if the target is hit
									7.9.3.2.1.4.5.1.5.2.1 set throw1Hit to true
							7.9.3.2.1.3.5.1.6 if throw1Hit is true
								7.9.3.2.1.3.5.1.6.1 set throw2 to the remaining score left
								7.9.3.2.1.3.5.1.6.2 throw for a double to attempt to checkout
								7.9.3.2.1.3.4.1.6.3 if the target is hit
									7.9.3.2.1.3.4.1.6.3.1 set the player’s score to 0
								7.9.3.2.1.3.4.1.6.4 else if the player score – the throw score is at least 2
									7..9.3.2.1.3.4.1.6.4.1 update the score
7.9.3.2.1.3.5.2 else
	7.9.3.2.1.3.5.2.1 set throw1 to the first step of the required checkout
	7.9.3.2.1.3.5.2.2 throw for the value of throw1
		7.9.3.2.1.3.5.2.2.1 if the current score – the throw score is at least 2
			7.9.3.2.1.3.4.2.2.1.1 update the score
	7.9.3.2.1.3.5.2.3 if the target is hit
		7.9.3.2.1.3.5.2.3 set throw1Hit to true
	7.9.3.2.1.3.5.2.4 if throw1Hit is true
		7.9.3.2.1.3.5.2.4.1 set throw2 to the final step of the checkout
		7.9.3.2.1.3.5.2.4.2 throw for a double to attempt to checkout
		7.9.3.2.1.3.5.2.4.2 if the target is hit
			7.9.3.2.1.3.5.2.4.2.1 set score to 0
		7.9.3.2.1.3.5.2.4.3 if the current score – the throw score is at least 2
			7.9.3.2.1.3.5.2.4.3.1 update the score
7.9.3.2.1.3.6 if there are no commas found
	7.9.3.2.1.3.6.1 throw for a double to attempt to checkout
	7.9.3.2.1.3.6.2 if the target is hit
		7.9.3.2.1.3.6.2 set score to 0
	7.9.3.2.1.3.6.3 else if the current score – the throw score is at least 2
		7.9.3.2.1.3.6.3.1 update the score
7.9.3.2.2 else
	7.9.3.2.2 loop 3 time
		7.9.3.2.2.1 throw for treble 20
		7.9.3.2.2.2 if the current score – the throw score is at least 2
			7.9.3.2.2.2.1 update the score
				7.9.3.3 if case is 2
			7.9.3.3.1 if score is less than 180 and not equal to 169, 168, 166, 165, 163, 162, 159
				7.9.3.3.1.1 if the score is over 170
					7.9.3.3.1.1.1 loop three times
						7.9.3.3.1.1.1.1 throw for treble 15
							7.9.3.3.1.1.1.1.1 if the player’s score – the throw score
								7.9.3.3.1.1.1.1.1.1 call set_current_score to update the score
				7.9.3.3.1.2 if the score is below 40 and is even
					7.9.3.3.1.2.1 throw for a double to finish
					7.9.3.3.1.2.2 increment total throws by one
					7.9.3.3.1.2.3 if the target is hit
						7.9.3.3.1.2.3.1 call set_current_score to set the score to 0
					7.9.3.1.2.4 if the target is not hit but the score will be at least 2
						7.9.3.1.2.4.1 call set_current_score to update the score	
				7.9.3.3.1.3 else
					7.9.3.3.1.3.1 call checkout to initialise remainingScore to a string containing the required steps to checkout
					7.9.3.3.1.3.2 initialise commaPos to the position of the first comma in remainingScore
					7.9.3.3.1.3.3 loop for the length of remainingScore
						7.9.3.3.1.3.3.1 if there is a comma at the current index
							7.9.3.3.1.3.3.1.1 increment numCommas by one
					7.9.3.3.1.3.4 if there are 2 commas found
						7.9.3.3.1.3.4.1 initialise variable throw1 to the first step of the checkout
						7.9.3.3.1.3.4.2 initialise variable throw1Hit and throw2Hit as false
						7.9.3.3.1.3.4.3 throw for the treble value throw1
						7.9.3.3.1.3.4.4 if the current score – the throw score is at least 2
							7.9.3.3.1.3.4.4.1 call set_current_score to update the player’s score
						7.9.3.3.1.3.4.5 if the target is hit
							7.9.3.3.1.3.4.5.1 set throw1Hit to true
						7.9.3.3.1.3.4.6 if throw1Hit is true
							7.9.3.3.1.3.4.6.1 remove the first part of the checkout from remainingScore
							7.9.3.3.1.3.4.6.2 set commaPos to the position of the next comma in the string
							7.9.3.3.1.3.4.6.3 set throw2 to the second part of the checkout
							7.9.3.3.1.3.4.6.4 If the first character of throw2 is a “T”
								7.9.3.3.1.3.4.6.4.1 throw for the treble value of throw2
								7.9.3.3.1.3.4.6.4.2 call set_total_throws to increment score by one
								7.9.3.3.1.3.4.6.4.3 if the player’s current score – the throw score is at least 2
									7.9.3.3.1.3.4.6.4.3.1 call set_current_score to update the player’s score
								7.9.3.3.1.3.4.6.4.3 if the target is hit
									7.9.3.3.1.3.4.6.4.3.1 set throw2Hit to true
							7.9.3.3.1.3.4.6.5 if the first character of throw2 is a “D”
								7.9.3.3.1.3.4.6.5.1 throw for the double value of throw2
								7.9.3.3.1.3.4.6.6 call set_total _throws to increment the total throws by one
								7.9.3.3.1.3.4.6.7 if the player’s score – the throw score is at least 2
									7.9.3.3.1.3.4.6.7.1 call set_current_score to update the player’s score
									7.9.3.3.1.3.4.6.7.2 If the target is hit
										7.9.3.3.1.3.4.6.7.2.1 set throw2Hit to true
							7.9.4.3.1.3.4.6.6 else
								7.9.4.3.1.3.4.6.6.1 throw for the value of throw2
								7.9.4.3.1.3.4.6.6.2 call set_total_throws to increment the total throws by one
								7.9.4.3.1.3.4.6.6.3 if the player’s current score – the throw score is at least 2
									7.9.4.3.1.3.4.6.6.3.1 call set_current_score to update the score
								7.9.4.3.1.3.4.6.6.4 if the target was hit
									7.9.4.3.1.3.4.6.6.4.1 set throw2Hit to true
							7.9.4.3.1.3.4.6.7 if throw2Hit is true
								7.9.4.3.1.3.4.6.7.1 set remainingScore to the final step of the checkout
								7.9.4.3.1.3.4.6.7.2 initalise throw3 to remainingScore
								7.9.4.3.1.3.4.6.7.3 increment total throws by one
								7.9.4.3.1.3.4.6.7.4 if score required is 50
									7.9.4.3.1.3.4.6.7.5 throw for the bull
								7.9.4.3.1.3.4.6.7.5 else
									7.9.4.3.1.3.4.6.7.5.1 throw for the double value of throw3
								7.9.4.3.1.4.6.7.6 if the required score was 50
									7.9.4.3.1.4.6.7.6.1 if the throw score was 50
										7.9.4.3.1.4.6.7.6.1.1 set the score to 0
									7.9.4.3.1.4.6.7.6.2 else
										7.9.4.3.1.4.6.7.2.1 if the target was hit
											7.9.4.3.1.4.6.7.2.1.1 set the score to 0
									7.9.4.3.1.4.6.7.6.3 if the target was not hit
										7.9.4.3.1.4.6.7.6.4 if the current score – the throw score is at least 2
											7.9.4.3.1.4.6.7.4.1 update the score
							7.9.4.3.1.3.4.6.8 if throw2Hit is false
								7.9.4.3.1.3.4.6.8.1 if the current score is less than 40 and even
									7.9.4.3.1.3.4.6.8.1.1 throw for a double to attempt to finish
									7.9.4.3.1.3.4.6.8.1.2 increment total throws by one
									7.9.4.3.1.3.4.6.8.1.3 if the target is hit
										7.9.4.3.1.3.4.6.8.1.3.1 set the player’s score to 0
								7.9.4.3.1.3.4.6.8.2 if the current score is odd
									7.9.4.3.1.3.4.6.8.2.1 throw for a single one to make the score even
								7.9.4.3.1.3.4.6.8.3 if the current score is greater than or equal to 62
									7.9.4.3.1.3.4.6.8.3.1 throw for treble 20
								7.9.4.3.1.3.4.6.8.4 else if the score is greater than 40
									7.9.4.3.1.3.4.6.8.5 throw for single 20
								7.9.4.3.1.3.4.6.8.5 if the player’s score – the throw score is at least 2
									7.4.3.1.3.4.6.8.5.1 update the score
						7.9.3.3.1.3.4.7 if throw1Hit is false
							7.9.3.3.1.3.4.7.1 set remainingScore to the output of the alternateCheckout function
							7.9.3.3.1.3.4.7.2 if remainingScore is empty
								7.9.3.3.1.3.4.7.2.1 loop twice
									7.9.3.3.1.3.4.7.2.1.1 throw for single 20
									7.9.3.3.1.3.4.7.2.1.2 if the player’s current score – the throw score is at least 2
										7.9.3.3.1.3.4.7.2.1.2.1 update the score		
							7.9.3.3.1.3.4.7.3 set commaPos to the position of the first comma found in remainingScore
							7.9.3.3.1.3.4.7.4 set throw1 to the first step of the new checkout, ignoring the first character
							7.9.3.3.1.3.4.8 remove the first part of the checkout from remainingScore
								7.9.3.3.1.3.4.8.1 if the first part of throw1 is a “T”
									7.9.3.3.1.3.4.8.1.1 throw for the treble value of throw1
									7.9.3.3.1.3.4.8.1.2 if the player’s current score – the throw score is at least 2
										7.9.3.3.1.3.4.8.1.2.1 update the score
									7.9.3.3.1.3.4.8.1.3 if the target is hit
										7.9.3.3.1.3.4.8.1.3.1 set throw1Hit to true
								7.9.3.3.1.3.4.8.2 if the first character of remainingScore is a “D”
									7.9.3.3.1.3.4.8.2.1 increment the total throws by one
									7.9.3.3.1.3.4.8.2.2 throw for the double value of throw1
									7.9.3.3.1.3.4.8.2.3 if the current score – the throw score is at least 2
										7.9.3.3.1.3.4.8.2.3.1 update the current score
									7.9.3.3.1.3.4.8.2.4 if the target was hit
										7.9.3.3.3.4.8.2.4.1 set throw1Hit to true
								7.9.3.3.1.3.4.8.3 if throw1Hit is true
									7.9.3.3.1.3.4.8.3.1 set throw2 to the remaining score / 2
									7.9.3.3.1.3.4.8.3.2 increment total throws by one
									7.9.3.3.1.3.4.8.3.3 throw for a double to checkout
									7.9.3.3.1.3.4.8.3.4 if the target was hit
										7.9.3.3.1.3.4.8.3.4.1 set score to 0
									7.9.3.3.1.3.4.8.3.5 else if the current score – the throw score is at least 2	
										7.9.3.3.1.3.4.8.3.5.1 update the score	
								7.9.3.3.1.3.4.8.4 else
									7.9.3.3.1.3.4.8.4.1 set i to 20, loop until i reaches 0
										7.9.3.3.1.3.4.8.4.1.1 if the current score – i is at least 2
											7.9.3.3.1.3.4.8.4.1.1.1 subtract i from the current score
											7.9.3.3.1.3.4.8.4.1.1.2 break	
					7.9.3.3.1.3.5 if there is 1 comma found
						7.9.3.3.1.3.5.1 if the first character of remainingScore is a “T” or “D”
							7.9.3.3.1.3.5.1.1 set throw1 to the first part of the checkout, ignoring the first character
							7.9.3.3.1.3.5.1.2 set throw1Hit and throw2Hit to false
							7.9.3.3.1.3.5.1.3 if the first character of remainingScore is a “T”
								7.9.3.3.1.3.5 throw for the treble value of throw1	
								7.9.3.3.1.3.6 increment total throws by one
								7.9.3.3.1.3.7 if the current score – the throw score is at least 2
									7.9.3.3.1.3.7.1 update the score
 								7.9.3.3.1.3.8 if the target is hit
									7.9.3.3.1.3.8.1 set throwHit1 to true
							7.9.3.3.1.3.5.1.4 if the first character is a “D”
								7.9.3.3.1.3.5.1.4.1 throw for the double value of throw1
								7.9.3.3.1.3.5.1.4.2 if the current score – the throw score is at least 2
									7.9.3.3.1.3.5.1.4.2.1 update the score
								7.9.3.3.1.3.5.1.4.3 if the target is hit
									7.9.3.3.1.3.5.1.4.3.1 set throw1Hit to true
							7.9.3.3.1.3.5.1.5 else
								7.9.3.3.1.3.5.1.5.1 throw for the value of throw1
								7.9.3.3.1.4.5.1.5.1.2 if the current score – the throw score is at least 2
									7.9.3.3.1.4.5.1.5.1.2.1 update the score
								7.9.3.3.1.4.5.1.5.2 if the target is hit
									7.9.3.3.1.4.5.1.5.2.1 set throw1Hit to true
							7.9.3.3.1.3.5.1.6 if throw1Hit is true
								7.9.3.3.1.3.5.1.6.1 set throw2 to the remaining score left
								7.9.3.3.1.3.5.1.6.2 throw for a double to attempt to checkout
								7.9.3.3.1.3.4.1.6.3 if the target is hit
									7.9.3.3.1.3.4.1.6.3.1 set the player’s score to 0
								7.9.3.3.1.3.4.1.6.4 else if the player score – the throw score is at least 2
									7.9.3.2.1.3.4.1.6.4.1 update the score
						7.9.3.3.1.3.5.2 else
							7.9.3.3.1.3.5.2.1 set throw1 to the first step of the required checkout
							7.9.3.3.1.3.5.2.2 throw for the value of throw1
							7.9.3.3.1.3.5.2.2.1 if the current score – the throw score is at least 2
								7.9.3.3.1.3.4.2.2.1.1 update the score
							7.9.3.3.1.3.5.2.3 if the target is hit
								7.9.3.3.1.3.5.2.3.1 set throw1Hit to true
							7.9.3.3.1.3.5.2.4 if throw1Hit is true
								7.9.3.3.1.3.5.2.4.1 set throw2 to the final step of the checkout
								7.9.3.3.1.3.5.2.4.2 throw for a double to attempt to checkout
								7.9.3.3.1.3.5.2.4.3 if the target is hit
									7.9.3.3.1.3.5.2.4.3.1 set score to 0
								7.9.3.3.1.3.5.2.4.3 if the current score – the throw score is at least 2
									7.9.3.3.1.3.5.2.4.3.1 update the score
					7.9.3.3.1.3.6 if there are no commas found
						7.9.3.3.1.3.6.1 throw for a double to attempt to checkout
						7.9.3.3.1.3.6.2 if the target is hit
						7.9.3.3.1.3.6.3 set score to 0
						7.9.3.3.1.3.6.4 else if the current score – the throw score is at least 2
							7.9.3.3.1.3.6.4.1 update the score
7.9.3.3.2 else
						7.9.3.3.2.1 loop 3 time
						7.9.3.3.2.2 throw for treble 20
						7.9.3.3.2.3 if the current score – the throw score is at least 2
							7.9.3.3.2.3.1 update the score

7.9.3.2 increment playOrder by one
	7.9.3.2.1 if playOrder = 3
		7.9.3.2.1.1 set playOrder to 1
7.9.3.3 if player one reaches 0
	7.9.3.3.1 increment player one’s game wins by one
	7.9.3.3.2 set each player’s score back to 501
7.9.3.4 if player two reaches 9
	7.9.3.4.1 increment player two’s game wins by one
	7.9.3.4.2 set each player’s score back to 0
7.9.3.5 if player one reaches 3 game wins
	7.9.3.5 increment player one’s set wins by one
	7.9.3.6 set each player’s game wins to 0
	7.9.3.7 set each player’s score to 501
7.9.3.6 if player two reaches 3 game wins
	7.9.3.6.1 increment player two’s set wins by one
	7.9.3.6.2 set each player’s game wins to 0
	7.9.3.6.3 set each player’s score to 501
			7.9.4 set score to player one’s set wins concatenated with player two’s set wins
			7.9.5 loop for the number of games
				7.9.5.1 if the current index of the scores array is empty
					7.9.5.1.1 set the current index of the scores array to the current score
		8 loop for the number of games
			8.1 set variable found to false
			8.2 set variable count to 1
			8.3 loop for number of games
				8.3.1 if current score is in the checked array
					8.3.1.1 set found to true
				8.3.2 if found is false
					8.3.2.1 count the number of occurrences for the current score
				8.3.3 calculate and output the frequency of the current score
			8.3.3 add the current score to the checked array

1.

UML – please draw your UML below
[image:]
[image: A screenshot of a computer code

Description automatically generated with low confidence]

Code – please paste the file which contains the main function.

//includes the required libraries
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <iomanip>
#include <string>
#include <Windows.h>
#include "Player.h"
#include "Board.h"
using namespace std;
int main()
{
	//initalises the random function
	srand(time(0));
	//variable to hold the order in which the players throw
	int playOrder;
	//variable to hold which game mode the player is playing (301 or 501)
	int gameDecision;
	//asks the user to decide which game to play
	std::cout << "Enter 1 for 301 and 2 for 501" << endl;
	cin >> gameDecision;
	//if gameDecision is equal to 1, the user has chosen 301
	if (gameDecision == 1)
	{
		//constructor for the player objects
		Player Player1("Peter Wright", 0, 0, 301);
		Player Player2("Gerwyn Price", 0, 0, 301);
		//initalises an object of the Board class
		Board Dartboard;

		//holds the variables for the players' accuracy
		int accuracy1;
		int accuracy2;
		//asks the user to enter the accuracy for each player
		std::cout << "Enter the accuracy for " << Player1.get_name() << endl;
		cin >> accuracy1;
		std::cout << "Enter the accuracy for " << Player2.get_name() << endl;
		cin >> accuracy2;

		//sets the accuracy for each player
		Player1.set_accuracy(accuracy1);
		Player2.set_accuracy(accuracy2);
		//sets the successful hits variable for each player to 0
		Player1.set_successful_hits(0);
		Player2.set_successful_hits(0);
		//stores the number of games the user chooses to simulate
		int numGames;
		//stores the score from the player's throw
		int score;
		//allows the user to enter the number of simulations to run
		std::cout << "Enter the number of simulations to run " << endl;
		cin >> numGames;

		//allows the user to decide who goes first
		std::cout << "Enter 1 for " << Player1.get_name() << " to throw first or 2 for " << Player2.get_name() << " to throw first" << endl;
		cin >> playOrder;

		//for loop for the number of games the user has chosen to simulate
		for (int i = 0; i < numGames; i++)
		{
			//switch statement for each player
			do {
				switch (playOrder)
				{
					//if playOrder = 1
				case 1:
					if (Player2.get_current_score() != 0)
					{
						//increments player one's total throws by one
						Player1.set_total_throws(Player1.get_total_throws() + 1);
						//calculates the target
						Dartboard.set_target(Player1.get_current_score());
						//if the target = 50
						if (Dartboard.get_target() == 50)
						{
							//throws for the bull
							Dartboard.set_throw_score(Dartboard.bull_throw_301(Player1.get_accuracy()));
							if (Player1.get_current_score() == 50)
							{
								if (Dartboard.get_throw_score() == 50)
								{
									Player1.set_successful_hits(Player1.get_successful_hits() + 1);
									//sets the score to 0
									Player1.set_current_score(0);
									//breaks
									break;
								}
							}
							//if the score for that throw is 50
							else if (Dartboard.get_throw_score() == 50)
							{
								//increments successful hits by one
								Player1.set_successful_hits(Player1.get_successful_hits() + 1);
								//updates the score
								Player1.set_current_score(Player1.get_current_score() - 50);
							}
							else
							{
								//if the player will not go bust
								if (Player1.get_current_score() - Dartboard.get_throw_score() >= 50)
								{
									//updates the score
									Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
								}

							}
						}	//if the target is 20
						else if (Dartboard.get_target() == 20)
						{
							//throws for single 20
							Dartboard.set_throw_score(Dartboard.single_throw(20, Player1.get_accuracy(), gameDecision));
							//if the dart hits its target
							if (Dartboard.get_throw_score() == 20)
							{
								//increments successful hits by one
								Player1.set_successful_hits(Player1.get_successful_hits() + 1);
							}
							//if the dart did not hit its target and the player will not go bust
							else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 50)
							{
								//updates the score
								Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
							}
						}
						//otherwise
						else {
							//throws for a single of the calculated target
							Dartboard.set_throw_score(Dartboard.single_throw(Dartboard.get_target(), Player1.get_accuracy(), gameDecision));
							//if the dart hits its target
							if (Dartboard.get_throw_score() == Dartboard.get_target())
							{
								//increments successful hits by one
								Player1.set_successful_hits(Player1.get_successful_hits() + 1);
								Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
							}
							//if the dart does not hit its target and the player will not go bust
							if (Player1.get_current_score() - Dartboard.get_throw_score() >= 50)
							{
								//updates the score
								Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
							}
						}
					}
					break;
				case 2:
					//if the other player has not already won
					if (Player1.get_current_score() != 0)
					{
						//increments player two's total throws by one
						Player2.set_total_throws(Player2.get_total_throws() + 1);
						//calculates the target
						Dartboard.set_target(Player2.get_current_score());
						//if the target = 50
						if (Dartboard.get_target() == 50)
						{
							//throws for the bull
							Dartboard.set_throw_score(Dartboard.bull_throw_301(Player2.get_accuracy()));
							if (Player2.get_current_score() == 50)
							{
								if (Dartboard.get_throw_score() == 50)
								{
									Player2.set_successful_hits(Player2.get_successful_hits() + 1);
									//sets the score to 0
									Player2.set_current_score(0);
									//breaks
									break;
								}
							}
							//if the score for that throw is 50
							else if (Dartboard.get_throw_score() == 50)
							{
								//increments successful hits by one
								Player2.set_successful_hits(Player2.get_successful_hits() + 1);
								//updates the score
								Player2.set_current_score(Player2.get_current_score() - 50);
							}
							else
							{
								//if the player will not go bust
								if (Player2.get_current_score() - Dartboard.get_throw_score() >= 50)
								{
									//updates the score
									Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
								}

							}
						}	//if the target is 20
						else if (Dartboard.get_target() == 20)
						{
							//throws for single 20
							Dartboard.set_throw_score(Dartboard.single_throw(20, Player2.get_accuracy(), gameDecision));
							//if the dart hits its target
							if (Dartboard.get_throw_score() == 20)
							{
								//increments successful hits by one
								Player2.set_successful_hits(Player2.get_successful_hits() + 1);
							}
							//if the dart did not hit its target and the player will not go bust
							else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 50)
							{
								//updates the score
								Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
							}
						}
						//otherwise
						else {
							//throws for a single of the calculated target
							Dartboard.set_throw_score(Dartboard.single_throw(Dartboard.get_target(), Player2.get_accuracy(), gameDecision));
							//if the dart hits its target
							if (Dartboard.get_throw_score() == Dartboard.get_target())
							{
								//increments successful hits by one
								Player2.set_successful_hits(Player2.get_successful_hits() + 1);
								Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
							}
							//if the dart does not hit its target and the player will not go bust
							if (Player2.get_current_score() - Dartboard.get_throw_score() >= 50)
							{
								//updates the score
								Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
							}
						}
					}
					break;
				}
				//increments playOrder by one to swap to the next player
				playOrder++;
				//if playOrder = 3
				if (playOrder == 3)
				{
					//resets it to one so that the two players alternate
					playOrder = 1;
				}
				//loops until one of the players reaches 0
			} while (Player1.get_current_score() > 0 && Player2.get_current_score() > 0);
			//if player one's score = 0
			if (Player1.get_current_score() == 0)
			{
				//increments number of game wins by one
				Player1.set_game_wins(Player1.get_game_wins() + 1);
				//resets both players' scores to 301
				Player1.set_current_score(301);
				Player2.set_current_score(301);
			}
			//if player two's score = 0
			else {
				//increments number of game wins by one
				Player2.set_game_wins(Player2.get_game_wins() + 1);
				//resets both players' scores to 301
				Player1.set_current_score(301);
				Player2.set_current_score(301);
			}
		}

		//calculates the success rates for both players
		Player1.set_actual_success_rate(float(Player1.get_successful_hits()) / float(Player1.get_total_throws()) * 100);
		Player2.set_actual_success_rate(float(Player2.get_successful_hits()) / float(Player2.get_total_throws()) * 100);
		//calculates the average number of successful hits per turn
		Player1.set_avgSuccess(float(Player1.get_successful_hits() / numGames));
		Player2.set_avgSuccess(float(Player1.get_successful_hits() / numGames));
		//outputs the results
		cout << "It took " << Player1.get_name() << " an average of " << Player1.get_avgSuccess() << " successful throws per game to win " << Player1.get_game_wins() << " games, with "<< Player1.get_successful_hits() <<" successful throws, and an average success rate of " << Player1.get_actual_success_rate() << " % " << endl;
		cout << "It took " << Player2.get_name() << " an average of " << Player2.get_avgSuccess() << " successful throws per game to win " << Player2.get_game_wins() << " games, with " << Player2.get_successful_hits() << " successful throws, and an average success rate of " << Player2.get_actual_success_rate() << "%" << endl;
	}
	//if gameDecision = 2, the user has chosen 501
	else if (gameDecision == 2)
	{
		//initalises the player objects
		Player Player1("Peter Wright", 0, 0, 501);
		Player Player2("Gerwyn Price", 0, 0, 501);
		//sets the player's accuracies
		Player1.set_accuracy(87);
		Player2.set_accuracy(85);
		//initalises an object of the Board class
		Board Dartboard;

		//sets the number of games the user will play
		const int numGames = 100;
		//sets up the variable that holds the final score for each set
		string score;
		//sets up the array that holds the scores
		string scores[numGames];
		//holds the variable for the order in which the players will throw
		int playOrder;
		//initalises the variable for the first throw at the bull
		int bull1;
		//initalises the variable for the second throw at the bull
		int bull2;
		//throws the first throw at the bull
		bull1 = Dartboard.bull_throw(Player1.get_accuracy());
		//throws the second throw at the bull
		bull2 = Dartboard.bull_throw(Player2.get_accuracy());

		//if the first throw is close to 50 than the second throw
		if (bull1 > bull2)
		{
			//player one goes first
			playOrder = 1;
		}
		//if the second throw if closer to 50 than the first throw
		else {
			//player two goes first
			playOrder = 2;
		}

		//for loop for the number of games to simulate
		for (int i = 0; i < numGames; i++)
		{
			//sets each player's set wins to 0
			Player1.set_set_wins(0);
			Player2.set_set_wins(0);
			//sets each player's score to 501
			Player1.set_current_score(501);
			Player2.set_current_score(501);
			//game on
			do
			{
				//switch statement for each player to take their three throws
				switch (playOrder)
				{
					//player one
				case 1:
					//if the score is less than 180 and not on a score that does not have a finish
					if (Player1.get_current_score() <= 180 && Player1.get_current_score() != 169 && Player1.get_current_score() != 168
						&& Player1.get_current_score() != 166 && Player1.get_current_score() != 165 && Player1.get_current_score() != 163
						&& Player1.get_current_score() != 162 && Player1.get_current_score() != 159)
					{
						//if the score is over 170
						if (Player1.get_current_score() > 170)
						{
							//for loop for three throws
							for (int i = 0; i < 3; i++)
							{
								//throws for treble 15, as this will get the score down to a relatively easy finish to checkout in as few throws as possible
								Dartboard.set_throw_score(Dartboard.treble_throw(15, Player1.get_accuracy()));
								//if the thrown score does not make the player go bust
								if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the player's score
									Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
								}
							}
							//breaks, as the player has taken their three throws
							break;
						}
						//if the player's score is below 40 and is even
						if (Player1.get_current_score() <= 40 && Player1.get_current_score() % 2 == 0)
						{
							//throws for a double of the value of their score to attempt to checkout
							int target = Player1.get_current_score() / 2;
							Dartboard.set_throw_score(Dartboard.double_throw(target, Player1.get_accuracy()));
							//increments the total number of throws by one
							Player1.set_total_throws(Player1.get_total_throws() + 1);
							//if the dart hits its target
							if (Dartboard.get_throw_score() == target)
							{
								//sets the player's score to 0
								Player1.set_current_score(0);
								//breaks
								break;
							}
							//if the dart has not hit its target but the player has not gone bust
							else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
							{
								//updates the player's score
								Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
							}
						}
						//if a two dart finish or three dart finish is possible
						else
						{
							//calls the checkout function to provide the player with a checkout based on their current score
							string remainingScore = Dartboard.checkout(Player1.get_current_score());
							//finds the first comma, as this will be the first shot the player must take
							int commaPos = remainingScore.find(",");
							//variable for number of commas, as this will determine whow many throws is required for the finish
							int numCommas = 0;
							//searches for commas to find the total number of commas in the string
							for (int i = 0; i < remainingScore.length(); i++)
							{
								if (remainingScore[i] == ',')
								{
									numCommas++;
								}
							}

							//three dart finish
							if (numCommas == 2)
							{
								//sets the variable for the first throw in the checkout to the first part of the string, ignoring the first character as this will be a letter to determine if the program should aim for a treble, double, or single
								int throw1 = stoi(remainingScore.substr(1, commaPos));
								//sets the variables that determine whether the required shots have been hit to false
								bool throw1Hit = false;
								bool throw2Hit = false;

								//the first shot in a three dart finish will always be a treble, so the program throws for a treble
								Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player1.get_accuracy()));
								//increments the total number of throws by one
								Player1.set_total_throws(1 + (Player1.get_total_throws()));
								//if the score has not made the player go bust
								if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the player's score
									Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
								}
								//if the dart hits its target
								if (Dartboard.get_throw_score() == 3 * throw1)
								{
									//sets the variable to true
									throw1Hit = true;
								}
								//the player can hit the next part of their finish
								if (throw1Hit == true)
								{
									//looks for the next part of the finish in the string
									remainingScore = remainingScore.substr(commaPos + 1);
									int commaPos = remainingScore.find(",");
									//sets throw2 to the next required shot of the finish
									string throw2 = remainingScore.substr(0, commaPos);
									//if the shot begins with "T"
									if (throw2[0] == 'T')
									{
										//throws for a treble
										Dartboard.set_throw_score(Dartboard.treble_throw(stoi(throw2.substr(1)), Player1.get_accuracy()));
										//increments total throws by one
										Player1.set_total_throws(1 + (Player1.get_total_throws()));
										//if the player has not gone bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the player's score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 3 * stoi(throw2.substr(1)))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if the shot begins with "D"
									else if (throw2[0] == 'D')
									{
										//throws for a double
										Dartboard.set_throw_score(Dartboard.double_throw(stoi(throw2.substr(1)), Player1.get_accuracy()));
										//increments throws by one
										Player1.set_total_throws(1 + (Player1.get_total_throws()));
										//if the player has not gone bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 2 * stoi(throw2.substr(1)))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if it does not begin with "T" or "D"
									else {
										//throws for a single
										Dartboard.set_throw_score(Dartboard.single_throw(stoi(throw2), Player1.get_accuracy(), gameDecision));
										//increments total throws by one
										Player1.set_total_throws(1 + (Player1.get_total_throws()));
										//if the player has not gone bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == stoi(throw2))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if both shots have been hit, the player can attempt to checkout
									if (throw2Hit == true)
									{
										//gets the last part of the checkout
										remainingScore = remainingScore.substr(commaPos + 1);
										string throw3 = remainingScore;
										//increments total throws by one
										Player1.set_total_throws(Player1.get_total_throws() + 1);
										//if the score required is 50
										if (throw3 == "50")
										{
											//throws for the bull
											Dartboard.set_throw_score(Dartboard.bull_throw(Player1.get_accuracy()));
										}
										//otherwise
										else {
											//throws for a double, as the player must finish on a double
											Dartboard.set_throw_score(Dartboard.double_throw(stoi(throw3.substr(1)), Player1.get_accuracy()));
										}
										//if the score required was 50
										if (throw3 == "50")
										{
											//if the player hit the bull
											if (Dartboard.get_throw_score() == 50)
											{
												//sets the score to 0
												Player1.set_current_score(0);
												//breaks
												break;
											}
										}
										//if the score was not 50
										else {
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * stoi(throw3.substr(1)))
											{
												//sets the score to 0
												Player1.set_current_score(0);
												//breaks
												break;
											}
											//if the dart did not hit its target
											else {
												//if the player did not go bust
												if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
												{
													//updates the score
													Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
												}
											}
										}
									}
									//the player has missed the second part of their finish but may still be able to finish
									else {
										//if the player's score is even and below 40
										if (Player1.get_current_score() % 2 == 0 && Player1.get_current_score() <= 40)
										{
											int target = Player1.get_current_score() / 2;
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(target, Player1.get_accuracy()));
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//if the dart hits its target
											if (Dartboard.get_throw_score() == target)
											{
												//sets the score to 0
												Player1.set_current_score(0);
												//breaks
												break;
											}
										}
										//focuses the score
										else if (Player1.get_current_score() % 2 != 0)
										{
											//throws for a single 1 to make the score even - enhance this
											Dartboard.set_throw_score(Dartboard.single_throw(1, Player1.get_accuracy(), gameDecision));
											//increments the total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
										}
										//focuses to the lowest possible finish
										else if (Player1.get_current_score() >= 62)
										{
											Dartboard.set_throw_score(Dartboard.treble_throw(20, Player1.get_accuracy()));
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
										}
										//if the score is greater than 40
										else if (Player1.get_current_score() > 40)
										{
											//throws for single 20
											Dartboard.set_throw_score(Dartboard.single_throw(20, Player1.get_accuracy(), gameDecision));
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
										}
										//if the player will not go bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
									}
								}
								//the player has missed the first part of their finish, but still may be able to checkout
								else
								{
									//calls the alternateCheckout function to search for an alternative checkout
									remainingScore = Dartboard.alternateCheckout(Player1.get_current_score());
									//if no checkout was found
									if (remainingScore == "")
									{
										//throws twice at the single 20
										for (int i = 0; i < 2; i++)
										{
											Dartboard.set_throw_score(Dartboard.single_throw(20, Player1.get_accuracy(), gameDecision));
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//if the player will not go bust
											if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
											}
										}
									}
									//if an alternative finish was found
									else {
										//searches for the commas to split up the checkout
										commaPos = remainingScore.find(',');
										//sets throw1 to the first part of the checkout
										throw1 = stoi(remainingScore.substr(1, commaPos));
										remainingScore = remainingScore.substr(commaPos + 1);
										//if the first part begins with "T"
										if (remainingScore[0] == 'T')
										{
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//throws for a treble
											Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player1.get_accuracy()));
											//if the player will not go bust
											if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
											}
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 3 * throw1)
											{
												//sets throw1Hit to true
												throw1Hit = true;
											}
										}
										//if it begins with "D"
										else if (remainingScore[0] == 'D')
										{
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw1, Player1.get_accuracy()));
											//if the player will not go bust
											if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
											}
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * throw1)
											{
												//sets throw1Hit to true
												throw1Hit = true;
											}
										}
										//if the required parts of the checkout were hit
										if (throw1Hit == true)
										{
											//the player can attempt to hit their checkout
											//gets the remaining part of the checkout
											int throw2 = stoi(remainingScore.substr(1)) / 2;
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw2, Player1.get_accuracy()));
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * throw2)
											{
												//sets the score to 0
												Player1.set_current_score(0);
												//breaks
												break;
											}
											//if the target was not hit but the player will not go bust
											else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
											}
										}
										else {
											for (int i = 20; i > 0; i--)
											{
												//looks for the highest number that can be hit without going bust
												if (Player1.get_current_score() - i >= 2)
												{
													Dartboard.set_throw_score(Dartboard.single_throw(i, Player1.get_accuracy(), gameDecision));
													if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
													{
														//updates the score
														Player1.set_current_score(Dartboard.get_throw_score());
													}
													break;
												}
											}
										}
									}
								}

							}
							//two dart finish
							else if (numCommas == 1)
							{
								//if checkout step begins with a "T" or "D"
								if (remainingScore[0] == 'T' || remainingScore[1] == 'D')
								{
									//throw 1 is set to the first part of the checkout, ignoring the first character
									int throw1 = stoi(remainingScore.substr(1, commaPos));
									//sets the hit variables to false
									bool throw1Hit = false;
									bool throw2Hit = false;
									//if it begins with "T"
									if (remainingScore[0] == 'T')
									{
										//throws for a treble
										Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player1.get_accuracy()));
										//increments total throws by one
										Player1.set_total_throws(Player1.get_total_throws() + 1);
										//if the player will not go bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 3 * throw1);
										{//sets the variable to true
											throw1Hit = true;
										}
									}
									//if it begins with "D"
									else if (remainingScore[0] == 'D')
									{
										//throws for a double
										Dartboard.set_throw_score(Dartboard.double_throw(throw1, Player1.get_accuracy()));
										//increments total throws by one
										Player1.set_total_throws(Player1.get_total_throws() + 1);
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 2 * throw1);
										{
											//variable is set to true
											throw1Hit = true;
										}
									}
									//if it does not begin with T or D
									else {
										//throws for a single
										Dartboard.set_throw_score(Dartboard.single_throw(throw1, Player1.get_accuracy(), gameDecision));
										//increments total throws by one
										Player1.set_total_throws(Player1.get_total_throws() + 1);
										//if the player will not go bust
										if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == throw1);
										{
											//sets the variable to true
											throw1Hit = true;
										}
										//if throw1hit is true
										if (throw1Hit == true)
										{
											//the player can attemt to checkout
											int throw2 = stoi(remainingScore.substr(commaPos + 1));
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw2 / 2, Player1.get_accuracy()));
											//increments total throws by one
											Player1.set_total_throws(Player1.get_total_throws() + 1);
											//if the dart hits its target
											if (Dartboard.get_throw_score() == throw2)
											{
												//sets the score to 0
												Player1.set_current_score(0);
												//breaks
												break;
											}
											//if the dart does not hit its target but the player will not go bust
											else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
											}
										}
									}
								}
								else {
									//gets the required checkout
									int throw1 = stoi(remainingScore.substr(0, commaPos));
									//sets the hits variables to false
									bool throw1Hit = false;
									bool throw2Hit = false;
									//throws for a single
									Dartboard.set_throw_score(Dartboard.single_throw(throw1, Player1.get_accuracy(), gameDecision));
									//increments total throws by one
									Player1.set_total_throws(Player1.get_total_throws() + 1);
									//if the player will not go bust
									if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
									{
										//updates the score
										Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
									}
									//if the dart hits its target
									if (Dartboard.get_throw_score() == throw1);
									{
										//sets the variable to true
										throw1Hit = true;
									}
									//if the variable is true
									if (throw1Hit == true)
									{
										//gets the final part of the checkout
										int throw2 = stoi(remainingScore.substr(commaPos + 2));
										//throw fors a double
										Dartboard.set_throw_score(Dartboard.double_throw(throw2 / 2, Player1.get_accuracy()));
										//increments the total throws by one
										Player1.set_total_throws(Player1.get_total_throws() + 1);
										//if the dart hits its target
										if (Dartboard.get_throw_score() == throw2)
										{
											//sets the score to 0
											Player1.set_current_score(0);
											//breaks
											break;
										}
										//if the dart does not hit its target but the player will not go bust
										else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
										}
									}
								}
							}
							//one dart finish
							else if (numCommas == 0)
							{
								//throws for a double to finish
								int target = Player1.get_current_score() / 2;
								Dartboard.set_throw_score(Dartboard.double_throw(target, Player1.get_accuracy()));
								//if the dart hits its target
								if (Dartboard.get_throw_score() == target)
								{
									//sets the score to 0
									Player1.set_current_score(0);
									//breaks
									break;
								}
								//if the dart does not hit its target but the player will not go bust
								else if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the score
									Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
								}
							}
						}

					}
					//if the player's score is above 180
					else {
						//for loop for 3 loops
						for (int i = 0; i < 3; i++)
						{
							//throws for treble 20
							Dartboard.set_throw_score(Dartboard.treble_throw(20, Player1.get_accuracy()));
							//increments total throws by one
							Player1.set_total_throws(1 + (Player1.get_total_throws()));
							//if the player will not go bust
							if (Player1.get_current_score() - Dartboard.get_throw_score() >= 2)
							{
								//updates the score
								Player1.set_current_score(Player1.get_current_score() - Dartboard.get_throw_score());
							}
						}
					}
					break;
				case 2:
					//player two
					//if the score is less than 180 and not on a score that does not have a finish
					if (Player2.get_current_score() <= 180 && Player2.get_current_score() != 169 && Player2.get_current_score() != 168
						&& Player2.get_current_score() != 166 && Player2.get_current_score() != 165 && Player2.get_current_score() != 163
						&& Player2.get_current_score() != 162 && Player2.get_current_score() != 159)
					{
						//if the score is over 170
						if (Player2.get_current_score() > 170)
						{
							//for loop for three throws
							for (int i = 0; i < 3; i++)
							{
								//throws for treble 15, as this will get the score down to a relatively easy finish to checkout in as few throws as possible
								Dartboard.set_throw_score(Dartboard.treble_throw(15, Player2.get_accuracy()));
								//if the thrown score does not make the player go bust
								if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the player's score
									Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
								}
							}
							//breaks, as the player has taken their three throws
							break;
						}
						//if the player's score is below 40 and is even
						if (Player2.get_current_score() <= 40 && Player2.get_current_score() % 2 == 0)
						{
							//throws for a double of the value of their score to attempt to checkout
							int target = Player2.get_current_score() / 2;
							Dartboard.set_throw_score(Dartboard.double_throw(target, Player2.get_accuracy()));
							//increments the total number of throws by one
							Player2.set_total_throws(Player2.get_total_throws() + 1);
							//if the dart hits its target
							if (Dartboard.get_throw_score() == target)
							{
								//sets the player's score to 0
								Player2.set_current_score(0);
								//breaks
								break;
							}
							//if the dart has not hit its target but the player has not gone bust
							else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
							{
								//updates the player's score
								Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
							}
						}
						//if a two dart finish or three dart finish is possible
						else
						{
							//calls the checkout function to provide the player with a checkout based on their current score
							string remainingScore = Dartboard.checkout(Player2.get_current_score());
							//finds the first comma, as this will be the first shot the player must take
							int commaPos = remainingScore.find(",");
							//variable for number of commas, as this will determine whow many throws is required for the finish
							int numCommas = 0;
							//searches for commas to find the total number of commas in the string
							for (int i = 0; i < remainingScore.length(); i++)
							{
								if (remainingScore[i] == ',')
								{
									numCommas++;
								}
							}

							//three dart finish
							if (numCommas == 2)
							{
								//sets the variable for the first throw in the checkout to the first part of the string, ignoring the first character as this will be a letter to determine if the program should aim for a treble, double, or single
								int throw1 = stoi(remainingScore.substr(1, commaPos));
								//sets the variables that determine whether the required shots have been hit to false
								bool throw1Hit = false;
								bool throw2Hit = false;

								//the first shot in a three dart finish will always be a treble, so the program throws for a treble
								Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player2.get_accuracy()));
								//increments the total number of throws by one
								Player2.set_total_throws(1 + (Player2.get_total_throws()));
								//if the score has not made the player go bust
								if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the player's score
									Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
								}
								//if the dart hits its target
								if (Dartboard.get_throw_score() == 3 * throw1)
								{
									//sets the variable to true
									throw1Hit = true;
								}
								//the player can hit the next part of their finish
								if (throw1Hit == true)
								{
									//looks for the next part of the finish in the string
									remainingScore = remainingScore.substr(commaPos + 1);
									int commaPos = remainingScore.find(",");
									//sets throw2 to the next required shot of the finish
									string throw2 = remainingScore.substr(0, commaPos);
									//if the shot begins with "T"
									if (throw2[0] == 'T')
									{
										//throws for a treble
										Dartboard.set_throw_score(Dartboard.treble_throw(stoi(throw2.substr(1)), Player2.get_accuracy()));
										//increments total throws by one
										Player2.set_total_throws(1 + (Player2.get_total_throws()));
										//if the player has not gone bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the player's score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 3 * stoi(throw2.substr(1)))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if the shot begins with "D"
									else if (throw2[0] == 'D')
									{
										//throws for a double
										Dartboard.set_throw_score(Dartboard.double_throw(stoi(throw2.substr(1)), Player2.get_accuracy()));
										//increments throws by one
										Player2.set_total_throws(1 + (Player2.get_total_throws()));
										//if the player has not gone bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 2 * stoi(throw2.substr(1)))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if it does not begin with "T" or "D"
									else {
										//throws for a single
										Dartboard.set_throw_score(Dartboard.single_throw(stoi(throw2), Player2.get_accuracy(), gameDecision));
										//increments total throws by one
										Player2.set_total_throws(1 + (Player2.get_total_throws()));
										//if the player has not gone bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == stoi(throw2))
										{
											//sets the variable to true
											throw2Hit = true;
										}
									}
									//if both shots have been hit, the player can attempt to checkout
									if (throw2Hit == true)
									{
										//gets the last part of the checkout
										remainingScore = remainingScore.substr(commaPos + 1);
										string throw3 = remainingScore;
										//increments total throws by one
										Player2.set_total_throws(Player2.get_total_throws() + 1);
										//if the score required is 50
										if (throw3 == "50")
										{
											//throws for the bull
											Dartboard.set_throw_score(Dartboard.bull_throw(Player2.get_accuracy()));
										}
										//otherwise
										else {
											//throws for a double, as the player must finish on a double
											Dartboard.set_throw_score(Dartboard.double_throw(stoi(throw3.substr(1)), Player2.get_accuracy()));
										}
										//if the score required was 50
										if (throw3 == "50")
										{
											//if the player hit the bull
											if (Dartboard.get_throw_score() == 50)
											{
												//sets the score to 0
												Player2.set_current_score(0);
												//breaks
												break;
											}
										}
										//if the score was not 50
										else {
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * stoi(throw3.substr(1)))
											{
												//sets the score to 0
												Player2.set_current_score(0);
												//breaks
												break;
											}
											//if the dart did not hit its target
											else {
												//if the player did not go bust
												if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
												{
													//updates the score
													Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
												}
											}
										}
									}
									//the player has missed the second part of their finish but may still be able to finish
									else {
										//if the player's score is even and below 40
										if (Player2.get_current_score() % 2 == 0 && Player2.get_current_score() <= 40)
										{
											int target = Player2.get_current_score() / 2;
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(target, Player2.get_accuracy()));
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//if the dart hits its target
											if (Dartboard.get_throw_score() == target)
											{
												//sets the score to 0
												Player2.set_current_score(0);
												//breaks
												break;
											}
										}
										//focuses the score
										else if (Player2.get_current_score() % 2 != 0)
										{
											//throws for a single 1 to make the score even - enhance this
											Dartboard.set_throw_score(Dartboard.single_throw(1, Player2.get_accuracy(), gameDecision));
											//increments the total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
										}
										//focuses to the lowest possible finish
										else if (Player2.get_current_score() >= 62)
										{
											Dartboard.set_throw_score(Dartboard.treble_throw(20, Player2.get_accuracy()));
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
										}
										//if the score is greater than 40
										else if (Player2.get_current_score() > 40)
										{
											//throws for single 20
											Dartboard.set_throw_score(Dartboard.single_throw(20, Player2.get_accuracy(), gameDecision));
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
										}
										//if the player will not go bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
									}
								}
								//the player has missed the first part of their finish, but still may be able to checkout
								else
								{
									//calls the alternateCheckout function to search for an alternative checkout
									remainingScore = Dartboard.alternateCheckout(Player2.get_current_score());
									//if no checkout was found
									if (remainingScore == "")
									{
										//throws twice at the single 20
										for (int i = 0; i < 2; i++)
										{
											Dartboard.set_throw_score(Dartboard.single_throw(20, Player2.get_accuracy(), gameDecision));
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//if the player will not go bust
											if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
											}
										}
									}
									//if an alternative finish was found
									else {
										//searches for the commas to split up the checkout
										commaPos = remainingScore.find(',');
										//sets throw1 to the first part of the checkout
										throw1 = stoi(remainingScore.substr(1, commaPos));
										remainingScore = remainingScore.substr(commaPos + 1);
										//if the first part begins with "T"
										if (remainingScore[0] == 'T')
										{
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//throws for a treble
											Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player2.get_accuracy()));
											//if the player will not go bust
											if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
											}
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 3 * throw1)
											{
												//sets throw1Hit to true
												throw1Hit = true;
											}
										}
										//if it begins with "D"
										else if (remainingScore[0] == 'D')
										{
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw1, Player2.get_accuracy()));
											//if the player will not go bust
											if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
											}
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * throw1)
											{
												//sets throw1Hit to true
												throw1Hit = true;
											}
										}
										//if the required parts of the checkout were hit
										if (throw1Hit == true)
										{
											//the player can attempt to hit their checkout
											//gets the remaining part of the checkout
											int throw2 = stoi(remainingScore.substr(1)) / 2;
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw2, Player2.get_accuracy()));
											//if the dart hits its target
											if (Dartboard.get_throw_score() == 2 * throw2)
											{
												//sets the score to 0
												Player2.set_current_score(0);
												//breaks
												break;
											}
											//if the target was not hit but the player will not go bust
											else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
											}
										}
										else {
											for (int i = 20; i > 0; i--)
											{
												//looks for the highest number that can be hit without going bust
												if (Player2.get_current_score() - i >= 2)
												{
													Dartboard.set_throw_score(Dartboard.single_throw(i, Player2.get_accuracy(), gameDecision));
													if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
													{
														//updates the score
														Player2.set_current_score(Dartboard.get_throw_score());
													}
													break;
												}
											}
										}
									}
								}

							}
							//two dart finish
							else if (numCommas == 1)
							{
								//if checkout step begins with a "T" or "D"
								if (remainingScore[0] == 'T' || remainingScore[1] == 'D')
								{
									//throw 1 is set to the first part of the checkout, ignoring the first character
									int throw1 = stoi(remainingScore.substr(1, commaPos));
									//sets the hit variables to false
									bool throw1Hit = false;
									bool throw2Hit = false;
									//if it begins with "T"
									if (remainingScore[0] == 'T')
									{
										//throws for a treble
										Dartboard.set_throw_score(Dartboard.treble_throw(throw1, Player2.get_accuracy()));
										//increments total throws by one
										Player2.set_total_throws(Player2.get_total_throws() + 1);
										//if the player will not go bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 3 * throw1);
										{//sets the variable to true
											throw1Hit = true;
										}
									}
									//if it begins with "D"
									else if (remainingScore[0] == 'D')
									{
										//throws for a double
										Dartboard.set_throw_score(Dartboard.double_throw(throw1, Player2.get_accuracy()));
										//increments total throws by one
										Player2.set_total_throws(Player2.get_total_throws() + 1);
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == 2 * throw1);
										{
											//variable is set to true
											throw1Hit = true;
										}
									}
									//if it does not begin with T or D
									else {
										//throws for a single
										Dartboard.set_throw_score(Dartboard.single_throw(throw1, Player2.get_accuracy(), gameDecision));
										//increments total throws by one
										Player2.set_total_throws(Player2.get_total_throws() + 1);
										//if the player will not go bust
										if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
										//if the dart hits its target
										if (Dartboard.get_throw_score() == throw1);
										{
											//sets the variable to true
											throw1Hit = true;
										}
										//if throw1hit is true
										if (throw1Hit == true)
										{
											//the player can attemt to checkout
											int throw2 = stoi(remainingScore.substr(commaPos + 1));
											//throws for a double
											Dartboard.set_throw_score(Dartboard.double_throw(throw2 / 2, Player2.get_accuracy()));
											//increments total throws by one
											Player2.set_total_throws(Player2.get_total_throws() + 1);
											//if the dart hits its target
											if (Dartboard.get_throw_score() == throw2)
											{
												//sets the score to 0
												Player2.set_current_score(0);
												//breaks
												break;
											}
											//if the dart does not hit its target but the player will not go bust
											else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
											{
												//updates the score
												Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
											}
										}
									}
								}
								else {
									//gets the required checkout
									int throw1 = stoi(remainingScore.substr(0, commaPos));
									//sets the hits variables to false
									bool throw1Hit = false;
									bool throw2Hit = false;
									//throws for a single
									Dartboard.set_throw_score(Dartboard.single_throw(throw1, Player2.get_accuracy(), gameDecision));
									//increments total throws by one
									Player2.set_total_throws(Player2.get_total_throws() + 1);
									//if the player will not go bust
									if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
									{
										//updates the score
										Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
									}
									//if the dart hits its target
									if (Dartboard.get_throw_score() == throw1);
									{
										//sets the variable to true
										throw1Hit = true;
									}
									//if the variable is true
									if (throw1Hit == true)
									{
										//gets the final part of the checkout
										int throw2 = stoi(remainingScore.substr(commaPos + 2));
										//throw fors a double
										Dartboard.set_throw_score(Dartboard.double_throw(throw2 / 2, Player2.get_accuracy()));
										//increments the total throws by one
										Player2.set_total_throws(Player2.get_total_throws() + 1);
										//if the dart hits its target
										if (Dartboard.get_throw_score() == throw2)
										{
											//sets the score to 0
											Player2.set_current_score(0);
											//breaks
											break;
										}
										//if the dart does not hit its target but the player will not go bust
										else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
										{
											//updates the score
											Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
										}
									}
								}
							}
							//one dart finish
							else if (numCommas == 0)
							{
								//throws for a double to finish
								int target = Player2.get_current_score() / 2;
								Dartboard.set_throw_score(Dartboard.double_throw(target, Player2.get_accuracy()));
								//if the dart hits its target
								if (Dartboard.get_throw_score() == target)
								{
									//sets the score to 0
									Player2.set_current_score(0);
									//breaks
									break;
								}
								//if the dart does not hit its target but the player will not go bust
								else if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
								{
									//updates the score
									Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
								}
							}
						}

					}
					//if the player's score is above 180
					else {
						//for loop for 3 loops
						for (int i = 0; i < 3; i++)
						{
							//throws for treble 20
							Dartboard.set_throw_score(Dartboard.treble_throw(20, Player2.get_accuracy()));
							//increments total throws by one
							Player2.set_total_throws(1 + (Player2.get_total_throws()));
							//if the player will not go bust
							if (Player2.get_current_score() - Dartboard.get_throw_score() >= 2)
							{
								//updates the score
								Player2.set_current_score(Player2.get_current_score() - Dartboard.get_throw_score());
							}
						}
					}
					break;
				}
				//increments the playOrder variable to swap between the two players
				playOrder++;
				//if playOrder = 3;
				if (playOrder == 3)
				{
					//resets playOrder to one to allow the program to alternate between the two players
					playOrder = 1;
				}
				//if player one reaches 0
				if (Player1.get_current_score() == 0)
				{
					//increments player one's game wins by one
					Player1.set_game_wins(Player1.get_game_wins() + 1);
					//sets both players back to 501
					Player1.set_current_score(501);
					Player2.set_current_score(501);
				}
				//if player two reaches 0
				else if (Player2.get_current_score() == 0)
				{
					//increments player two's game wins by one
					Player2.set_game_wins(Player2.get_game_wins() + 1);
					//sets both players back to 501
					Player1.set_current_score(501);
					Player2.set_current_score(501);
				}

				//if player one wins 3 games
				if (Player1.get_game_wins() == 3)
				{
					//increments player one's set wins by one
					Player1.set_set_wins(Player1.get_set_wins() + 1);
					//resets both player's game wins back to 0 and their scores to 501
					Player1.set_game_wins(0);
					Player2.set_game_wins(0);
					Player1.set_current_score(501);
					Player2.set_current_score(501);
				}
				//if player two wins 3 games
				else if (Player2.get_game_wins() == 3)
				{
					//increments player two's set wins by one
					Player2.set_set_wins(Player2.get_set_wins() + 1);
					//resets both player's game wins back to 0 and their scores to 501
					Player1.set_game_wins(0);
					Player2.set_game_wins(0);
					Player1.set_current_score(501);
					Player2.set_current_score(501);
				}
				//loops until one of the players reaches 7 set wins
			} while (Player1.get_set_wins() != 7 && Player2.get_set_wins() != 7);
			//stores the score of the game by concatanating both scores into a string
			score = to_string(Player1.get_set_wins()) + ":" + to_string(Player2.get_set_wins());
			//loops for the number of games
			for (int i = 0; i < numGames; i++)
			{
				//searches the scores array until it finds an empty position
				if (scores[i] == "")
				{
					//fills the empty position with the game's score
					scores[i] = score;
					//breaks
					break;
				}
			}
		}
		//outputs the results
		//variable to hold the number of times each score appeared
		float count;

		//array to hold the scores that have already been counted
		string checked[numGames];
		//variable to determine if the score has been counted
		bool found;
		//loops for the number of games
		for (int i = 0; i < numGames; i++)
		{
			//sets found to false
			found = false;
			//sets count to 1
			count = 1;
			//loops through the checked array to see if the current score has already been counted
			for (int x = 0; x < numGames; x++)
			{
				//if the score has been counted
				if (checked[x] == scores[i])
				{
					//sets found to true
					found = true;
					//breaks
					break;
				}
			}
			//if the score has not been counted
			if (found == false)
			{
				//loops through the scores array to count how many times the score appears
				for (int j = i + 1; j < numGames; j++)
				{
					//if the score appears
					if (scores[i] == scores[j])
					{
						//increments count by one
						count++;
					}
				}
				//outputs the result
				cout << "The frequency of " << scores[i] << " is " << float((count / numGames) * 100) << "%" << endl;
			}
			//adds the current score to the checked array
			checked[i] = scores[i];
		}
	}
	//ensures that the console window does not close before the results are read
	system("pause");
};

Code – for each class please copy this page and copy in the code. It does not matter if this goes over one page. Make sure the code is easily readable.

Class Name: Player

Player.cpp
#include "Player.h"
#include <string>

//constructor
Player::Player(string n, int t, int g, int c)
{
	name = n;
	totalThrows = t;
	gameWins = g;
	currentScore = c;
}
//destructor
Player::~Player()
{

}

//setters and getters
void Player::set_name(string s)
{
	name = s;
}
string Player::get_name()
{
	return name;
}

void Player::set_current_score(int n)
{
	Player::currentScore = n;
}
int Player::get_current_score()
{
	return currentScore;
}

void Player::set_accuracy(int n)
{
	accuracy = n;
}
int Player::get_accuracy()
{
	return accuracy;
}

void Player::set_total_throws(int n)
{
	totalThrows = n;
}
int Player::get_total_throws()
{
	return totalThrows;
}

void Player::set_successful_hits(int n)
{
	successfulHits = n;
}
int Player::get_successful_hits()
{
	return successfulHits;
}

void Player::set_actual_success_rate(int n)
{
	actualSuccessRate = n;
}
int Player::get_actual_success_rate()
{
	return actualSuccessRate;
}

void Player::set_score_required(int s)
{
	scoreRequired = s;
}
int Player::get_score_required()
{
	return scoreRequired;
}

void Player::set_game_wins(int n)
{
	gameWins = n;
}

int Player::get_game_wins()
{
	return gameWins;
}

void Player::set_set_wins(int n)
{
	setWins = n;
}

int Player::get_set_wins()
{
	return(setWins);
}

void Player::set_avgSuccess(int n)
{
	avgSuccess = n;
}
int Player::get_avgSuccess()
{
	return avgSuccess;
}

Player.h

#pragma once
#include <string>
using namespace std;
class Player
{
private:
	//variable to store the player's name
	std::string name;
	//variable to store the player's score
	int currentScore;
	//variable to store the required score to checkout
	int scoreRequired;
	//stores the player's accuracy
	int accuracy;
	//stores the players's total throws
	int totalThrows;
	//stores the player's successful hits
	int successfulHits;
	//stores the player's actual success rate
	float actualSuccessRate;
	//stores the player's game wins
	int gameWins;
	//stores the player's set wins
	int setWins;
	//stores the player's average successful throws
	int avgSuccess;
public:
	//constuctor
	Player(string n, int t, int g, int c);
	//destructor
	~Player();
	//setters and getters
	void set_name(string s);
	string get_name();
	void set_current_score(int n);
	int get_current_score();
	void set_accuracy(int n);
	int get_accuracy();
	void set_total_throws(int n);
	int get_total_throws();
	void set_successful_hits(int n);
	int get_successful_hits();
	void set_actual_success_rate(int n);
	int get_actual_success_rate();
	void set_score_required(int n);
	int get_score_required();
	void set_game_wins(int n);
	int get_game_wins();
	void set_set_wins(int n);
	int get_set_wins();
	void set_avgSuccess(int n);
	int get_avgSuccess();
};

Class Name: Board

Board.cpp
#include "Board.h"
#include "Player.h"
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;
int Board::single_throw(int t, int a, int gm)
{
	//2d array with each segment of the board to allow the dart to go left or right of the intended target
	int board[2][21] = { {0,20,15,17,18,12,13,19,16,14,6,8,9,4,11,10,7,2,1,3,5},
		{0,18,17,19,13,20,10,16,11,12,15,14,5,6,9,2,8,3,4,7,1} };
	//generates a random number between 0-100 to compare with the player's accuracy
	int r = rand() % 100;
	//if the target is the outer bull
	if (t == 25)
	{
		//if statement executes if the random number is smaller than the player's accuracy
		if (r < a)
		{
			//the outer bull has been hit
			return 25;
		}
		//if the random number is larger than the player's accuracy
		else
		{
			//determines whether the inner bull is hit or the dart misses entirely
			r = rand() % 2 + 1;
			if (r == 2)
			{
				//the inner bull has been hit
				return 50;
			}
			//if the bull is missed entirely
			else if (r == 1)
			{
				//generates a random number to determine which number the dart hits
				r = rand() % 20 + 1;
				int miss = rand() % 3 + 1;
				//hits the single segment of that numnber
				if (miss == 1)
				{
					return r;
				}
				//hits the double segment of that number
				else if (miss == 2)
				{
					return 2 * r;
				}
				//hits the treble segment of that number
				else {
					return 3 * r;
				}
			}
		}
	}
	//if the target is not the outer bull
	else
	{
		//if the random number is smaller than the accuracy
		if (r < a)
		{
			//the intended target has been hit
			return t;
		}
		//if the random number is larger than the accuracy
		else
		{
			//if the game mode = 1, the player is playing 301 so the options to hit the outer bull, trebles, and doubles are removed
			if (gm == 1)
			{
				r = rand() % 100 + 1;
				//45% chance of going left
				if (r <= 45)
				{
					return board[0][t];
				}
				//45% chance of going right
				else if (r > 45 && r <= 90)
				{
					return board[1][t];
				}
				//10% chance of missing entirely
				else
				{
					return 0;
				}
			}
			r = rand() % 100 + 1;
			//25% chance of going left
			if (r <= 25)
			{
				return board[0][t];
			}
			//25% chance of going right
			else if (r > 25 && r <= 50)
			{
				return board[1][t];
			}
			//15% chance of left double
			else if (r > 50 && r <= 65)
			{
				return 2 * (board[0][t]);
			}
			//15% chance of right double
			else if (r > 65 && r <= 80)
			{
				return 2 * (board[1][t]);
			}
			//5% chance of left treble
			else if (r > 80 && r <= 85)
			{
				return 3 * (board[0][t]);
			}
			//5% chance of right treble
			else if (r > 85 && r <= 90)
			{
				return 3 * (board[1][t]);
			}
			//7% chance of missing the board
			else if (r > 90 && r <= 97)
			{
				return 0;
			}
			//3% chance of anywhere else on the board
			else {
				//generates a random number to decide if the dart hits the bull or another segment
				r = rand() % 2 + 1;
				if (r == 1)
				{
					//bull
					r = rand() % 2 + 1;
					if (r == 1)
					{
						//outer bull
						return 25;
					}
					else {
						//bull
						return 50;
					}
				}
				//any other segment on the board
				else {
					//input validation so that the algorithm does not accidentally return the intended target
					do {
						r = rand() % 20 + 1;
					} while (r != t);
					int segment = rand() % 3 + 1;
					//the dart has hit a single segment
					if (segment == 1)
					{
						return r;
					}
					//the dart has hit a double segment
					else if (segment == 2)
					{
						return 2 * r;
					}
					//the dart has hit a treble
					else {
						return 3 * r;
					}
				}
			}
		}
	}
}

int Board::double_throw(int t, int a)
{
	//2d array with each segment of the board to allow the dart to go left or right of the intended target
	int board[2][21] = { {0,20,15,17,18,12,13,19,16,14,6,8,9,4,11,10,7,2,1,3,5},
		{0,18,17,19,13,20,10,16,11,12,15,14,5,6,9,2,8,3,4,7,1} };
	//generates a random number between 0-100 to compare with the player's accuracy
	int r = rand() % 100;
	if (r < a)
	{
		//the intended target has been hit
		return 2 * t;
	}
	//if the random number is larger than the accuracy
	else
	{
		r = rand() % 100 + 1;
		//25% chance of hitting the left double
		if (r <= 25)
		{
			return 2 * (board[0][t]);
		}
		//25% chance of hitting the right double
		else if (r > 25 && r <= 50)
		{
			return 2 * (board[1][t]);
		}
		//15% chance of hitting the left single
		else if (r > 50 && r <= 65)
		{
			return board[0][t];
		}
		//15% chance of hitting the right single
		else if (r > 65 && r <= 80)
		{
			return board[1][t];
		}
		//5% chance of left treble
		else if (r > 80 && r <= 85)
		{
			return 3 * (board[0][t]);
		}
		//5% chance of right treble
		else if (r > 85 && r <= 90)
		{
			return 3 * (board[1][t]);
		}
		//7% chance of missing the board
		else if (r > 90 && r <= 97)
		{
			return 0;
		}
		//3% chance of anywhere else on the board
		else {
			//generates a random number to decide if the dart hits the bull or another segment
			r = rand() % 2 + 1;
			if (r == 1)
			{
				//bull
				r = rand() % 2 + 1;
				if (r == 1)
				{
					//outer bull
					return 25;
				}
				else {
					//bull
					return 50;
				}
			}
			//any other segment on the board
			else {
				//input validation so that the algorithm does not accidentally return the intended target
				do {
					r = rand() % 20 + 1;
				} while (r != t);
				int segment = rand() % 3 + 1;
				//the dart has hit a single segment
				if (segment == 1)
				{
					return r;
				}
				//the dart has hit a double segment
				else if (segment == 2)
				{
					return 2 * r;
				}
				//the dart has hit a treble
				else {
					return 3 * r;
				}
			}
		}
	}
}

int Board::treble_throw(int t, int a)
{
	//2d array with each segment of the board to allow the dart to go left or right of the intended target
	int board[2][21] = { {0,20,15,17,18,12,13,19,16,14,6,8,9,4,11,10,7,2,1,3,5},
		{0,18,17,19,13,20,10,16,11,12,15,14,5,6,9,2,8,3,4,7,1} };
	//generates a random number between 0-100 to compare with the player's accuracy
	int r = rand() % 100;
	if (r < a)
	{
		//the intended target has been hit
		return 3 * t;
	}
	//if the random number is larger than the accuracy
	else
	{
		r = rand() % 100 + 1;
		//25% chance of hitting the left treble
		if (r <= 25)
		{
			return 3 * (board[0][t]);
		}
		//25% chance of hitting the right treble
		else if (r > 25 && r <= 50)
		{
			return 3 * (board[1][t]);
		}
		//15% chance of hitting the left single
		else if (r > 50 && r <= 65)
		{
			return board[0][t];
		}
		//15% chance of hitting the right single
		else if (r > 65 && r <= 80)
		{
			return board[1][t];
		}
		//5% chance of left double
		else if (r > 80 && r <= 85)
		{
			return 2 * (board[0][t]);
		}
		//5% chance of right double
		else if (r > 85 && r <= 90)
		{
			return 2 * (board[1][t]);
		}
		//7% chance of hitting anywhere else on the board
		else if (r > 90 && r <= 97)
		{
			//generates a random number to decide if the dart hits the bull or another segment
			r = rand() % 2 + 1;
			if (r == 1)
			{
				//bull
				r = rand() % 2 + 1;
				if (r == 1)
				{
					//outer bull
					return 25;
				}
				else {
					//bull
					return 50;
				}
			}
			//any other segment on the board
			else
			{
				//input validation so that the algorithm does not accidentally return the intended target
				do {
					r = rand() % 20 + 1;
				} while (r != t);
				int segment = rand() % 3 + 1;
				//the dart has hit a single segment
				if (segment == 1)
				{
					return r;
				}
				//the dart has hit a double segment
				else if (segment == 2)
				{
					return 2 * r;
				}
				//the dart has hit a treble
				else {
					return 3 * r;
				}
			}
		}
		//3% chance of missing the board entirely
		else
		{
			return 0;
		}
	}
}

int Board::bull_throw(int a)
{
	int r = rand() % 100 + 1;
	if (r < a)
	{
		return 50;
	}
	else {
		r = rand() % 100 + 1;
		//80% chance that the outer bull is hit instead
		if (r <= 80)
		{
			return 25;
		}
		else {
			r = rand() % 20 + 1;
			int segment = rand() % 100 + 1;
			//80% chance to hit a single
			if (segment <= 80)
			{
				return r;
			}
			// 10% chance to hit a treble
			else if (segment > 80 && segment <= 90)
			{
				return 3 * r;
			}
			//5% chance to hit a double
			else if (segment > 90 && segment <= 95)
			{
				return 2 * r;
			}
			//5% chance to miss entirely
			else {
				return 0;
			}
			return r;
		}

	}
}

string Board::checkout(int c)
{
	//4d array to store the steps for a 3 dart finish
	string threeDartFinish[4][65] = {
		//scores
		{"170", "167", "164", "161", "160", "158", "157", "156", "155", "154", "153", "152", "151",
		"150", "149", "148", "147", "146", "145", "144", "143", "142", "141", "140", "139", "138",
		"137", "136", "135", "134", "133", "132", "131", "130", "129", "128", "127", "126", "125",
		"124", "123", "122", "121", "120", "119", "118", "117", "116", "115", "114", "113","112",
		"111", "110", "109", "108", "107", "106", "105", "104", "103", "102", "101", "99"},
		//first shots
		{"T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20","T20", "T20", "T20",
		"T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20",
		"T20", "T20", "25", "T20", "T20", "25", "T20", "T20", "T19", "T18", "T20", "T19", "T18",
		"T20", "T19", "T18", "T20", "T20", "T19", "T20", "T20", "T19", "T19", "T20", "T19","T20",
		"T19", "T20", "T20", "T20", "T20", "T20", "T19", "T16", "T19", "T20", "T20", "T19"},
		//second shots
		{"T20", "T19", "T18", "T17", "T20", "T20", "T19", "T20", "T19", "T18", "T19", "T20", "T17",
		"T18", "T19", "T20", "T17", "T18", "T19", "T20", "T17", "T14", "T19", "T20", "T13", "T18", "T15",
		"T20", "T20", "T14", "T19", "T19", "T13", "T20", "T12", "T14", "T17", "T19", "T13", "T16", "T16",
		"T20", "T11", "20", "T12", "18", "17", "19", "18", "14", "16", "20", "14", "10", "9", "16", "15",
		"6", "16", "16", "6", "10", "9", "10"},
		//final shots
		{"50", "50", "50", "50", "D20", "D19", "D20", "D18", "D19", "D20", "D18", "D16", "D20", "D18", "D16",
		"D14", "D18", "D16", "D14", "D12", "D16", "D20", "D12", "D10", "D20", "D12", "D16", "D8", "50", "D16",
		"D8", "50", "D16", "D5", "D18", "D16", "D8", "D6", "D16", "D8", "D9", "D4", "D14", "D20", "D13", "D20",
		"D20", "D20", "D20", "D20", "D20", "D16", "D20", "D20", "D20", "D16", "D16", "D20", "D16", "D20", "D20",
		"D16", "D16", "D16"} };

	//3d array to store the steps for a 2 dart finish
	string twoDartFinish[3][78]{
		//scores
		{"100", "98", "97", "96", "95", "94", "93", "92", "91", "90", "89", "88", "87", "86", "85", "84", "83",
		"82", "81", "80", "79", "78", "77", "76", "75", "74", "73", "72", "71", "70", "69", "68", "67", "66",
		"65", "64", "63", "62", "61", "60", "59", "58", "57", "56", "55", "54", "53", "52", "51", "50", "49",
		"48", "47", "46", "45", "44", "43", "42", "41", "39", "37", "35", "33", "31", "29", "27", "25", "23",
		"21", "19", "17", "15", "13", "11", "9", "7", "5", "3"},
		//first shots
		{"T20", "T20", "T19", "T20", "T19", "T18", "T19", "T20", "T17", "T18", "T19", "T16", "T17", "T18", "T15",
		"T20", "T17", "T14", "T19", "T16", "T13", "T18", "T19", "T20", "T17", "T14", "T19", "T16", "T13", "T18",
		"T19", "T20", "T17", "T14", "T15", "T16", "T13", "T10", "T15", "20", "19", "18", "17", "16", "15", "14",
		"13", "20", "19", "18", "17", "16", "15", "6", "13", "12", "11", "10", "9", "7", "5", "3", "17", "15",
		"13", "11", "9", "7", "5", "3", "1", "7", "5", "3", "1", "3", "1", "1",},
		//final shots
		{"D20", "D19", "D20", "D18", "D19", "D20", "D18", "D16", "D20","D18", "D16", "D20", "D18", "D16", "D20",
		"D12", "D16", "D20", "D12", "D16", "D20", "D12", "D10", "D8", "D12", "D16", "D8", "D12", "D16", "D8",
		"D6", "D4", "D8", "D12", "D10", "D8", "D12", "D16", "D8", "D20", "D20", "D20", "D20", "D20", "D20", "D20",
		"D20", "D16", "D16", "D16", "D16", "D16", "D16", "D20", "D16", "D16", "D16", "D16", "D16", "D16", "D16",
		"D16", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D4", "D4", "D4", "D4", "D2", "D2", "D1"}, };

	//loops for the length of the 4d array
	for (int i = 0; i < 65; i++)
	{
		//if the score matches the player's remaining score
		if (threeDartFinish[0][i] == to_string(c))
		{
			//assigns the required steps to checkout to the string scoreRequired
			string scoreRequired(threeDartFinish[1][i] + "," + threeDartFinish[2][i] + "," + threeDartFinish[3][i]);
			//returns scoreRequired
			return scoreRequired;
		}
	}
	//loops for the length of the 4d array
	for (int i = 0; i < 78; i++)
	{		//if the score matches the player's remaining score
		if (twoDartFinish[0][i] == to_string(c))
		{	//assigns the required steps to checkout to the string scoreRequired
			string scoreRequired(twoDartFinish[1][i] + "," + twoDartFinish[2][i]);
			//returns scoreRequired
			return scoreRequired;
		}
	}
}

string Board::alternateCheckout(int s)
{
	//4d array to store the steps for a 3 dart finish
	string threeDartFinish[4][65] = {
		//scores
		{"170", "167", "164", "161", "160", "158", "157", "156", "155", "154", "153", "152", "151",
		"150", "149", "148", "147", "146", "145", "144", "143", "142", "141", "140", "139", "138",
		"137", "136", "135", "134", "133", "132", "131", "130", "129", "128", "127", "126", "125",
		"124", "123", "122", "121", "120", "119", "118", "117", "116", "115", "114", "113","112",
		"111", "110", "109", "108", "107", "106", "105", "104", "103", "102", "101", "99"},
		//first shots
		{"T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20","T20", "T20", "T20",
		"T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20", "T20",
		"T20", "T20", "25", "T20", "T20", "25", "T20", "T20", "T19", "T18", "T20", "T19", "T18",
		"T20", "T19", "T18", "T20", "T20", "T19", "T20", "T20", "T19", "T19", "T20", "T19","T20",
		"T19", "T20", "T20", "T20", "T20", "T20", "T19", "T16", "T19", "T20", "T20", "T19"},
		//second shots
		{"T20", "T19", "T18", "T17", "T20", "T20", "T19", "T20", "T19", "T18", "T19", "T20", "T17",
		"T18", "T19", "T20", "T17", "T18", "T19", "T20", "T17", "T14", "T19", "T20", "T13", "T18", "T15",
		"T20", "T20", "T14", "T19", "T19", "T13", "T20", "T12", "T14", "T17", "T19", "T13", "T16", "T16",
		"T20", "T11", "20", "T12", "18", "17", "19", "18", "14", "16", "20", "14", "10", "9", "16", "15",
		"6", "16", "16", "6", "10", "9", "10"},
		//final shots
		{"50", "50", "50", "50", "D20", "D19", "D20", "D18", "D19", "D20", "D18", "D16", "D20", "D18", "D16",
		"D14", "D18", "D16", "D14", "D12", "D16", "D20", "D12", "D10", "D20", "D12", "D16", "D8", "50", "D16",
		"D8", "50", "D16", "D5", "D18", "D16", "D8", "D6", "D16", "D8", "D9", "D4", "D14", "D20", "D13", "D20",
		"D20", "D20", "D20", "D20", "D20", "D16", "D20", "D20", "D20", "D16", "D16", "D20", "D16", "D20", "D20",
		"D16", "D16", "D16"} };

	//3d array to store the steps for a two dart finish
	string twoDartFinish[3][78]{
		//scores
		{"100", "98", "97", "96", "95", "94", "93", "92", "91", "90", "89", "88", "87", "86", "85", "84", "83",
		"82", "81", "80", "79", "78", "77", "76", "75", "74", "73", "72", "71", "70", "69", "68", "67", "66",
		"65", "64", "63", "62", "61", "60", "59", "58", "57", "56", "55", "54", "53", "52", "51", "50", "49",
		"48", "47", "46", "45", "44", "43", "42", "41", "39", "37", "35", "33", "31", "29", "27", "25", "23",
		"21", "19", "17", "15", "13", "11", "9", "7", "5", "3"},
		//first shots
		{"T20", "T20", "T19", "T20", "T19", "T18", "T19", "T20", "T17", "T18", "T19", "T16", "T17", "T18", "T15",
		"T20", "T17", "T14", "T19", "T16", "T13", "T18", "T19", "T20", "T17", "T14", "T19", "T16", "T13", "T18",
		"T19", "T20", "T17", "T14", "T15", "T16", "T13", "T10", "T15", "20", "19", "18", "17", "16", "15", "14",
		"13", "20", "19", "18", "17", "16", "15", "6", "13", "12", "11", "10", "9", "7", "5", "3", "17", "15",
		"13", "11", "9", "7", "5", "3", "1", "7", "5", "3", "1", "3", "1", "1",},
		//final shots
		{"D20", "D19", "D20", "D18", "D19", "D20", "D18", "D16", "D20","D18", "D16", "D20", "D18", "D16", "D20",
		"D12", "D16", "D20", "D12", "D16", "D20", "D12", "D10", "D8", "D12", "D16", "D8", "D12", "D16", "D8",
		"D6", "D4", "D8", "D12", "D10", "D8", "D12", "D16", "D8", "D20", "D20", "D20", "D20", "D20", "D20", "D20",
		"D20", "D16", "D16", "D16", "D16", "D16", "D16", "D20", "D16", "D16", "D16", "D16", "D16", "D16", "D16",
		"D16", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D8", "D4", "D4", "D4", "D4", "D2", "D2", "D1"}, };

	//loops for the length of the 4d array
	for (int i = 0; i < 65; i++)
	{
		//if the score in the array matches the player's remaining score
		if (threeDartFinish[1][i] == to_string(s))
		{
			//assigns the required checkout steps to the string scoreRequired
			string scoreRequired = threeDartFinish[2][i] + threeDartFinish[3][i];
			//returns scoreRequired
			return scoreRequired;
		}
	}

	//loops for the length of the 3d array
	for (int i = 0; i < 78; i++)
	{
		//if the score in the array matches the player's remaining score
		if (twoDartFinish[1][i] == to_string(s))
		{
			//assigns the required checkout steps to the string scoreRequired
			string scoreRequired = twoDartFinish[2][i];
			//returns scoreRequired
			return scoreRequired;
		}
	}
	//if a checkout is not found, scoreRequired is empty
	string scoreRequired = "";
	//returns scoreRequired
	return scoreRequired;
}

//sets throw score
void Board::set_throw_score(int t)
{
	throwScore = t;
}

//returns throw score
int Board::get_throw_score()
{
	return throwScore;
}

//bull throw for playing 301
int Board::bull_throw_301(int a)
{

	//generates a random number between 1-100
	int r = rand() % 100 + 1;
	//if the randomly generated number is less than the accuracy
	if (r < a)
	{
		//returns 50
		return 50;
	}
	//otherwise
	else {
		//returns a random number between 1-20
		r = rand() % 20 + 1;
		return r;
	}
}

//calculates the players target based on the score that is passed in
void Board::set_target(int n)
{
	//if the players score is greater than or equal to 100 or equal to 50
	if (n >= 100 || n == 50)
	{
		//sets target to 50
		target = 50;
	}
	// if the score is between 70-100
	else if (n < 100 && n >= 70)
	{
		//sets target to 20
		target = 20;
	}
	//otherwise
	else {
		//sets target to the difference between the player's score and 50
		target = n - 50;
	}
}

int Board::get_target()
{
	//returns target
	return target;
}

Board.h
#pragma once
#include <string>
using namespace std;
class Board
{
private:
	//holds the score for a throw
	int throwScore;
	int target;
public:
	//functions
	int single_throw(int t, int a, int gm);
	int double_throw(int t, int a);
	int treble_throw(int t, int a);
	int bull_throw(int a);
	int bull_throw_301(int a);
	string checkout(int c);
	string alternateCheckout(int ts);
	//setter and getter
	void set_throw_score(int n);
	int get_throw_score();
	void set_target(int n);
	int get_target();
};

image1.png

image2.png

